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Abstract

In this paper a neural network approach to the on-line solution of linear inequality systems is
considered. Three different techniques are discussed and for each technique a novel neural
network implementation is proposed. The first technique is a standard penalty method imple-
mented as an analog neural network. The second technique is based on the transformation of
inequality constraints into equality constraints with simple bounds on the variables. The trans-
formed problem is then solved using least squares (LS) and least absolute values (LAV)
optimisation criteria. The third technique makes use of the regularised total least squares criterion
(RTLS). For each technique a suitable neural network architecture and associated algorithm in the
form of nonlinear differential equations has been developed. The validity and performance of the
proposed algorithms has been verified by computer simulation experiments. The analog neural
networks are deemed to be particularly well suited for high throughput, real time applications.

Keywords: Analog neural networks; Parallel architectures; Linear inequality systems; Stochastic gradient
descent optimisation

1. Introduction

Many problems in science and technology involve solving large sets of linear
inequality and or equality constraints [1,7,9,10,12,15]. Furthermore in many applications
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such as image and signal restoration, computer tomography, system identification and
automatic control it is required to solve such systems in real time [1,6,14]). Unfortunately
for applications requiring the solution of such systems within a fraction of a millisecond
a standard digital computer cannot comply with the desired computation time or
alternatively its use is too expensive. One promising approach to solving such problems
is to employ artificial neural networks (ANN) [1-6,1 1]. The main purpose of this paper
is to review known techniques involving the use of analog neural networks and to
propose new algorithms which require fewer neural processing units and/or offer
improved computational performance.

2. Formulation of the problem

This paper outlines a neural network approach to the solution of the following
classical constraint satisfaction problem [13]

n
Yoa,x<b, i=12,....m (D
=1

and/or
(m+q)
Y a;x;=b, i=m+1lm+2,....m+gq. (2)
=1 ‘

In the expressions (1), (2) the parameters a,; € R and b, € R are normally expected
to define well the characteristics of the modelled problem. However, in practice, these
parameters are frequently known only approximately. Consequently, the constraints
satisfaction problem involving a combined set of inequalities and equations is seen as a
more realistic practical problem. The solution to such a problem however may be not
unique and in order to find a point-solution, an additional optimisation criterion needs to
be introduced.

Another concern that needs to be addressed when developing techniques for the
solution of (1) and (2) is the ill-conditioning of the mathematical expressions. Frequently
the practical problems are ill-conditioned, so a small perturbation of the input data may
cause a large change in the solution [13]. The research challenge is to construct a
numerically stable and computationally efficient algorithm for the solution of the
constraint satisfaction problem (1), (2) that will be suitable for use in real-time (on-line
to physical processes).A general approach advocated in this paper is that of the
reformulation of the problem (1) and (2) as an optimisation problem [1,4,6]:

minimise  f( x) (3)
subject to inequality constraints,
alx<b, i=12,....m : (4)

equality constraints,

alx=b, i=m+1lm+2,...m+q
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and simple bounds,

X SXjS X0 J= 12,0000, (6)

where x€R", aT=1[a,,a,,...,a;,] is the ith row of a matrix A €R!"*¥*" and
flx)€R is the appropriately defined cost function. The cost function f(x) can take
various forms, e.g.:

(i) f{x)=const — pure linear inequality /equality problem;

(i) f(x) = Sl xll; - p-norm problem;

(ii.2) f(x) = 3l x|I* - least squares problem;

(ii.b) f{x)=¢Tx — linear programming problem;

(iii) Ax)=2L%, —x;Inx; x;>0 — maximum entropy problem.

In this paper, without loss of generality, in order to simplify notations, the optimisa-
tion problem (3) with inequality constraints (4) and simple bounds (6) will be consid-
ered.

3. Analog neural network models using penalty function approach

The mapping of a constrained optimisation problem into an appropriate loss (cost)
function is a standard approach in the design of artificial neural networks (ANN) [2-6].
Consequently the construction of an appropriate energy function E(x) for which the
lowest energy state will correspond to the optimal solution x* is a pre-requisite for the
formulation of the optimisation problem in terms of ANN.

For the minimisation problem (3), (4), (6), a general energy function, based on the
penalty method [6,14] can be constructed:

E(x) = £(x) + kL 0(ri(x)) (72)

i=1

or equivalently

m
E(x) = vf(x) + Lo(r(x)), | (7b)
i=1 A
where k> 0 denotes the penalty parameter, »> 0 is the reciprocal penalty parameter,
r{x)=alx—b; are the residuals, and v(r(x))= max{0,sgn(r,(x))P(r(x)} are the
penalty functions with P(r(x))=0.
For example, the penalty functions may take one of the following forms:

(a))  P(r)=3r? (quadratic), - (8a)
(b) P(r)lrl (I, = norm), (8b)
© pr={""? forlrl <8 Hupers). (8¢c)

Irl=B%/2 forlrl>p
(d) P(r)=B%Incosh(r/B). B>0 (logistic). (8d)
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Fig. 1. Penalty functions. (a) Quadratic function. (b) Absolute values function. (c) Huber's function. (d)
Logistic function,



A. Cichocki, A. Bargiela / Parallel Computing 22 (1997) 1455-1475 1459

The plots of these functions and the associated first derivatives,

W(r)= {P(r) iorrZO 9)
orr<0
are shown in Fig. 1(a)—(d).

It is known from the optimisation theory [14] that, except for trivial cases, only
non-differentiable penalty functions P(r;) enable an exact solution to the original
constrained optimisation problem in a single unconstrained minimisation while assuming
a finite value of the penalty parameter k. Usually, in order to ensure a feasible solution
satisfying all of the inequality constraints, the penalty parameter k in (7a) must tend to
infinity. This is rather inconvenient from the implementation point of view. Therefore, it
is proposed to use equation (7b) in which the parameter v > 0 decreases to zero as time
increases to infinity. Often a compromise is accepted by setting the parameter » = const
to a sufficiently small value, so that the resulting solution can be very close to the exact
unconstrained optimisation problem [6].

Using the standard gradient descent method for the minimisation of the energy
function E(x) the optimisation problem (7b) can be mapped onto a system of nonlinear
ordinary differential equations

dxj a3 m .
-I__“fa E(x)=—u; v<pj(xj)+ZaU‘1f(rl), ji=12,...,n, (10)

i=1

where p;> 0 is the ]eaming rate,

8
@, (x;) = ——f(x) (11)
l
activation function of the output neurons,
P'(r) ifr=0,
v - {0 . (12)
otherwise,

activation function of input neurons.

On the basis of the set of differential equations (10)-(12) the ANN with suitable
connection weights, the activation functions ¢,(x) and ¥,(r,) and input excitations has
been designed. The detailed functional block diagram of the ANN implementing these
equations is given in Fig. 2(a). The network consists of limiting integrators, adders
(summing amplifiers) with associated connection weights a;; and nonlinear building
blocks implementing the activation functions (see Fig. 1 and Fig. 3). The network of
Fig. 2(a) consists of two layers of processing units. The first layer calculates the
residuals r,(x) and the errors W (r,(x)), while the variables of interest x; are calculated
in the second layer which combines and integrates in time the errors W(r,).

It should be noted that simple bounds constraints on state variables: x; <ux;<x;
(cf. (6)) are conveniently implemented using integrators with signal limiters at their
output. The input signals are integrated but they cannot drive the output beyond the
specified limits [.\'j"““,xj"m]. In such an approach, all simple bounds constraints are
““hard’’, i.e., the constraints must not be violated either at the final solution or during the
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(a) Detailed neural network

0><

WY (r)

ED-»;;(M)

Vf ()]t

(b) Aggregated neural network

Fig. 2. Neural network using penalty function approach. (a) Detailed neural network. (b) Aggregated neural
network. :

optimisation process. Equivalently one can employ a nonlinear transformation which
maps an unlimited output signal u; into an output-limited signal x; of the jth integrator,

x;=8,(u), (13)
e.g.
_ K~ X
xj—xjnun+ 1 +e- 7% ’ (14)

v> 0.
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Fig. 3. Exemplary plot of the activation function ¢(x;)=(3/3x)f(x) with f(x)= (1/plixll.

The artificial neural network making use of the above transformations is presented in
Fig. 2(b) and it is described by a system of differential equations as follows:

d

—u==p[V7(x) + AT (r())]), | (15)

x=g(u), (16)
where

po=diag{ B, R, o B)s B> 0,
g(u) = [8(1).8:(),---.8,(u)]"

r(x)=Ax-b,
of of of 17
Vf(x)=[a,-a,...,axn] . (17)

It should be noted that due to employing appropriate activation functions in the
output layer the satisfaction of the bound constraints is ensured.

4. Neural network models using transformation of inequality constraints into
equality constraints

The neural network models can be considerably simplified if all inequality constraints
of the form
axs<b, (18)

are converted into equality constraints.
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It is easy to note that the above set of inequality constraints can be re-written as
follows to satisfy the requirement that b, > O for all i:

alx<b, i=12,...k, (19)
ax>b, i=k+1,..,m. (20)

Such inequality constraints can be transformed into corresponding linear equations by
means of an auxiliary variable y, > 0, [3],

alx—by =0, (21)

withO<y,<lfori=12,...;kand y,>1fori=k+1,...,m.
The minimisation problem (3), (4) can now be re-formulated as follows:

minimise  f( x) (22)
subject to equality constraints ‘

Ax—byy=0 (23)
and simple bounds

Xjin S TS X (24)

0O<y,<1 fori=12,....k, (25)

=1 fori=k+1,...,m, (26)
where

A=a,a,,....a,] €R"™*",

by = diag{b,.b,,...,b,} ER",
yeR”, xeR”
For this problem the following energy function can be formulated,
E(x,y) = vf(x) + LP[r(x.y)]. (27)
i=1
where v>0, r(x,y) =alx—y;b, and P(r,) are penalty function terms as specified in
(82)—(8d).

Minimisation of the energy function according to the gradient descent method leads
to a system of differential equations

d

—x= —u[Vf(x) + AT (Ax~byy)], (28)
d _

—‘;;y=,u.bDII’(Ax—bDy), (29)

with simple bounds (24)-(26), where
p=diag{ g .py, ...}, p;>0forall j,
apP 9P aP

W(Ax—b,)y)=?f(r(x,y))=[¥,572,...,;] (30)
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Fig. 4. Neural nctwork implementing transformation of inequality constraints into equality constraints.

A functional block diagram illustrating the implementation of the algorithm described
by (28)-(29) is shown in Fig. 4.
It is interesting to note that in a special case of P(r,)=(1/2)r}

2, for all i, the above
algorithm simplifies as follows

d
—x=—p[ = Vf(x) + (A7) 2~ (476o)y)]. (1)
d

with simple bounds (24)-(26)
An alternative conversion of inequalities (19), (20) into equations is as follows. The
“k** inequality constraints (19) can be replaced by

ax+x,,,=b, (33)

i

where x,, ;>0 is a new variable called a slack variable. Analogously, the remaining
“m — k’* inequality constraints (20) can be replaced by

ax—x,.,=b, (34)

where x,, ;>0 is a new variable called a surplus variable.
Using (33) and (34) the optimisation problem (3), (4) is expressed as follows

minimise  f( x) (35)

subject to equality constraints

AR=b (36)

and simple bounds
i SX;Sx, o forj=12,....n, (37)
x;20 forj=n+1l....n+m, (38)

where £=[2,%,, 10000 s Xyl A= [AI_:,,] e R™*(+m and I is a diagonal matrix
with the first k elements equal 1 and the rest of diagonal elements equal —1.
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For the above problem the following energy function can be formulated
m
E(2)=vf(2)+ LP(r(%)), (39)
i=1

where f{£)=[f(£),0]" and O is a vector of m coordinates equal 0.
Minimisation of the energy function (39) according to gradient descent method leads
to a system of differential equations:
dz o .
—= —;,e[va(f) + AT ( 2—1;)], (40)

where

P(#)....,

. E
V(A% ~b)= 11/(?(2))=[

dF,

3 T
P(F
2ol
and V(£) =[VA(£),0]" and O is a vector of m coordinates equal 0.

A special but very important case is when P(7(%))=|7(%)|, for all i, where
F(%)=X}I1a,;x;— b;. In this case the energy function contains the sum of the absolute
values of the residuals so the criterion is called the least absolute values criterion (LAV).
Minimising such an energy function leads to the set of the following differential
equations:

dx -
i p.{l/Vf(.i') + ATsgn[ ( 52)]} (41)

where 7(£) = A%, sgn(#) = [sgn(r,),... sgn(r,)land

1, #>0,

en(f)=\_1, #<o.

The algorithm based on this equation is called the LAV algorithm. A characteristic
feature of this algorithm is its ability to reject erroneous data so the solutions are
spanned by the most correct data while the outliers are ignored. However, the penalty
function terms P(#)=|#| are not differentiable at r,=0 so a modified criterion
approximating the LAV criterion and differentiable at r,=0 can be introduced as
follows:

P(#)=PBIncosh(?/B) B>0 (42)
In this case the set of differential equations takes the form

dz o - o

— = —u{Wf( %) + A"tanh[(7(£))/B]}. (43)

where#(£) = A% — b, tanh(#/8) = [tanh(?,/B),.. . tanh(?, /B)I".
Note that for a very small 8 the function tanh(r) closely approximates the sgn(r)
function so the solution to (43) is the LAV solution. However, for large B, 8> 1, the
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Xmax
X T
|V = A'A wlf o
Xmin
Vf(x) | if—

(b) Aggregated neural network

Fig. 5. Simplified neural nctwork implementing transformation of incquality constraints into equality con-
straints. (a) Detailed neural nctwork. (b) Aggregated neural network.
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function tanh(r) approximates a linear function in an arbitrarily large range, so the
solution to (43) approximates a regularised least squares solution:

dz - q
—= —;L[va(f)-i-A_T(Af—b)]. (44)

The same equation can be obtained by directly applying the criterion P(? )
Equation (44) can be simplified as follows:

%=—,L[uvﬁf)+w9—@], (45)
where W=ATA € R™7, @=A"b € R" and 7i = n + m.

The neural network implementation of the simplified differential equation (45) is
shown in Fig. 5.

It should be pointed out that the number of processing units (neurons) can be reduced
by combining the two processing layers. However, this necessitates some pre-processing
of data and it may be inconvenient for large matrices. particularly, when the entries a;;
and/or b, are varying with time.

The nerwork architectures discussed so far require a rather large number of
processing units (analog multipliers and adders). What follows is a discussion of
another approach which makes it possible to solve the regularised LS problem using
only a single neuron with adaptive synaptic weights.

As a preliminary to further discussion the following instantaneous residuals function
is considered:

Fl2(0)] =577 = T ()7 £(1)), (46)

i=1
where sT=[sl(t),sz(t),...,sm(r)] is a vector of zero-mean, uncorrelated, identically
distributed external excitation signals {1] and

P=A%-b.
It is worth noting that with the above definition of sT the residuals function is equal
to zero if and only if the constraint Af=bis exactly satisfied. Elaborating the equation
(46) one can write

m

Fle(n] = Zaj(f))?,-(f)—f;(f) + Xs(Dx ()= X s(D)x,,(0),

j=1 i=1 i=k+1
(47)
where @(1) =L a,;5(t) and b(t) = L™ b,s.(0).
Using the above instantaneous residuals functlon the instantaneous estimate of the
energy (cost) function at time ¢ can be defined as follows

E(£(r)) = vf(x) + P[F(2(1))], (48)

where P(F) is the penalty function term, e.g. one given by equations (8a)—(8d).

Fig. 6. Neural network using random perturbation signal. (a) Neuron with adaptive synaptic weights. (b) Unit
delays.
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Minimisation of the energy leads to a system of differential equations
d _ o .
—5(0) = —w[ve(x(0) + &)W [F(2(1))]], (49)

d ~f A
—xi(0) = —us(DPF(R())], (50)

for j=12,...,nand i= 1,2,....,m and where

9 ad
p>0, >0, o(x(1)= a—f(f(:)), v[F(2(0)] = PP
j =
In a special case of P(?) = 37 the system of differential equations (49)—(50) simplifies
to .

d .
=50 = = [ve(x(0) +a,(NF(£(1))]. (51)

d —~ A P
:j;xi+n(t)=_”5i([)r[x([)]' (52)

for j=12,...,nand i=1.2,...,m.

The systems of differential equations (49)—(50) and (51)-(52) represent basic adap-
tive learning algorithms for a single artificial neuron as shown in Fig. 6. The network is
driven by the products of the incoming data g, ; and b; and the zero-mean uncorrelated
pseudo-random signals s,(z). It is self-evident that the artificial neuron shown in Fig. 6
allows concurrent processing of information. If only one pseudo-random signal genera-
tor is available, the m excitation signals s,() can be generated using a chain of unit
delays as shown in Fig. 6(b).

It should be noted that the neural network can be further simplified by replacing the
analog multipliers, which can be quite expensive, with simple switches or sign reversers
controlled by a pseudo-random multiphase binary generator [6].

5. Neural network model using regularised total least squares criterion

The criteria considered so far assumed that all errors are confined to the observation
vector b and that the data matrix A is free from errors. However, such an assumption is
often unrealistic since the sampling errors, modelling errors and instrument errors imply
possible inaccuracies of the entries in matrix A. The total least squares criterion (TLS)
has been introduced to reflect this more realistic approach to the estimation problem
[6,16]. :

We consider now the optimisation problem (3)-(6) with g > n. This problem can be
transformed to the following:

minimise f( x) x € R" (53)
subject to equality constraints

-

A®=b (54)
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and simple bounds
X, SX;<Xx; , j=12,...,m, (55)
X 20, i=12,...,m, (56)

where bER™ 9, 2=[x,x5,...,%,,,]ER"", A€ RmrOxX(ntm)

Note that the system of linear equations A% = b is overdetermined (since (m + g) >
(n + m)) and a cost function f(x) can play a role of a regularisation function.

Using the regularised total least squares criterion the following energy function can
be constructed

Eqris(%(1)) = vf(x) + Z(\/l—;(??—’)‘) , (57)

i=1

A

where m =m + g and r(x(t))——Zf’,,aij(t) b,.

The first term »f(x) is the regularisation term whose purpose is to force a
smoothness constraint on the estimated optimal solution x° for ill-conditioned prob-
lems. The regularisation parameter v > 0 determines the relative importance of this term.
The second term is the standard TLS term [6] which forces the weighted sum of

residuals

to be minimal.

Comparing to the standard least squares, the solution of the total least squares
problem is computationally quite burdensome. This is probably why the TLS method
has not been used in optimisation as widely as it might be expected.

We propose now a new simple adaptive learning algorithm that overcomes the
problem of computational complexity of the TLS.

For this purpose we formulate the following instantaneous energy function:

1 Ple(0)]
Egris(£(2)) = vf(x) + 5 2T +1 (58)
where
n k m
F(%(1)) = Zaj(t)xj(t) _E(‘) + lei(’)an(t) - ; lsi(t)xi+n(’)
i=1 i= i=k+

() = A%(1) - b, a()=Xm. a,s(1), and b() =T bs(1).
Applying now a standard gradient descent algorithm we obtain a set of differential

equations

d d _a(0(FTR+1) = F(0) x,(1)
Z0 =~ () + 70 " (59)
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5 (0

m

251(’)xi+n(’)

A
I
u(s) l/

Fig. 7. Generalised network implementing the regularised total least squares (RTLS).
and

d .
= %ien(1) = = p(0) (D) 7(4), (60)

where u(r) > 0 and is typically decreasing to zero.
The above system of differential equations simplifies, after linearisation, to the
following
d -
—x,(1) = = (N {ve(x) +F(1)[a(0) +5(n)x(n)]} (61)

for j=12,...,n and
d
—x10(1) = =i(D (D7) (62)
for i =1,2,....m, which in effect is an adaptive parallel learning algorithm for solving
the regularised total least squares (RTLS) problem.
A diagram illustrating the implementation of the algorithm is shown in Fig. 7. By
comparing this diagram with that of Fig. 6, it can be noted that the algorithm (61)-(62)
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represents a generalisation of the ‘‘standard’’ LS algorithm described by equations
(49)-(50).

By introducing a parameter B in the equation (61) a general form of the algorithm is
obtained which caters for both LS and TLS criteria

2 x0) = =0 {vex) + 70 a0 + BB 5], (63)

where 8= 0 for LS criterion and =1 for TLS criterion. Increasing the value of the,
parameter B even further has an effect of giving greater emphasis on errors in matrix A
compared to errors associated with vector 4. In an extreme case of 8> 1 it can be
assumed that the vector b is almost free from errors and all errors are associated with
entries of data matrix A. Such a case is referred to in the literature, as the data least
squares (DLS) problem [8].

6. Computational examples

In order to verify the correctness and performance of the proposed neural networks in
solving the systems of inequalities, extensive simulation studies of the systems presented
in Figs. 2 and 4-7 have been undertaken. The empirical study included a number of
inequality systems as well as various penalty functions. The following is a representative
sample of this study.

A system of inequalities has been considered
x+x,< 1.1,
-x, —x,< =09,
x, +5x,<3.1,
-x,—5x,£—29,
-x,—2x,<—2.0.

Using the penalty function approach the above inequalities have been mapped onto a
set of nonlinear ordinary differential equations, (10), which are then implemented as a
neural network illustrated in Fig. 2. The penalty function adopted in this example is a
sigmoidal function P(r) = 82 Incosh(r/B).

The least absolute values (LAV) and the least squares (LS) solutions to the problem

have been obtained by adjusting the value of the parameter 8 in the penalty function.
The least absolute values solution found by the neural network for 8= 0.01 was

x =[0.5992,0.4982]"
with the residual vector
r=1[-0.0026,~ 0.1974,— 0.0097, - 0.1903,0.4043]".
This solution compares quite well with the standard LAV solution
x =[0.6000,0.5000]", r=[0.0,—02,0.0,-0.2,0.4],

particularly if it is noted that the neural network delivers this result extremely rapidly.
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Fig. 8. MV and LS estimates obtained using the neural network of Fig. 2.

Assuming time constants of integrators of the order of 0.01 ps the steady state is reliably
reached within 1 s of the simulated time as illustrated in Fig. 8.
The least squares solution to the problem found for the parameter 8 = 100 was

x = [0.6666,0.4762]"

with the residual vector

r=[0.0428,— 0.2428,— 0.0524,— 0.1476,0.3810]T

which is almost identical to the analytical LS solution

x=[0.6667,0.4762]",  r=[0.0429,— 0.2429,~ 0.0524,~ 0.1476,0.3810]".

Again the neural network converged to the solution very rapidly, as illustrated in Fig.
8, delivering the result in less than 0.1 s of the simulated time.

The robustness of the LAV and LS solutions was investigated by varying the value of
the parameter 8 over a range of 0.001 to 1000. It has been found, through the
simulations, that the neural network converged to an accurate LAV solution for
B <0.02 and to a LS solution for > 2. Fig. 9 illustrates the relationship between the
final solution and the value of the parameter B. It is interesting to note that for the
penalty function P(r) = B2 Incosh(r/pB) the convergence becomes significantly slower
as the parameter B decreases to 0.001 (line (a) on the third diagram in Fig. 9).

To investigate the effect of the penalty function on the neural network solution, a
similar test was carried out for a modified penalty function P(r) = B Incosh(r/B). It is
quite remarkable to see that the solutions obtained for this penalty function are virtually
identical to the ones obtained before; with a small variance occurring only in the
transitory stage between LAV and LS solutions (lines (a) and (b) on the top two
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Fig. 9. Dependence of the neural network solution on the value of the parameter 8 in the penalty function and
the effect of using different penalty functions: (a) Eq. (8d) and (b) Eq. (48).

diagrams in Fig. 9). It is interesting to note, however, that for this penalty function the
convergence to the LAV solution has been improved (line (b) on the third diagram in
Fig. 9). This is attributed to the fact that the cormresponding activation function
¥(r) = tanh(r/B) maintains a maximum and minimum value of 1 and — 1 throughout
the range of the parameter 3.

While the simulation studies of the neural network of Fig. 2 have confirmed its
excellent performance characteristics, hardware implementation of such a network is
likely to be costly due to a large number of analog multipliers and adders that are
needed to build it. In order to put this investigation in a correct perspective, a simplified
network consisting of only one neuron with adaptive synaptic weights (Fig. 6) has been
simulated and evaluated against the previous results. The penalty function used was
P(r)= B2Incosh(r/B) giving an activation function ¥(r)= Btanh(r/B) The least
absolute values solution to the system of inequalities, found for the parameter 8= 0.01,
was

x =[0.5957,0.4897]"

and the least squares solution found for 8= 10 was

x=[0.6679,0.4731]".
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Fig. 10. LAV and LS estimates obtained using the neural network of Fig. 6.

The time trajectories of the estimates are presented in Fig. 10. It can be noticed that
both LAV and LS solutions converge into a 2% envelope in approximately 0.15ms of
simulated time.

While the estimates calculated using this neural network clearly provide coarser
approximation of the analytical solutions, it is evident that the network of Fig. 6 can be
realised at a fraction of the cost of the network presented in Fig. 2.

It must be noted however that the above simulation experiments are intended to
quantify the performance of actual analog neural networks and DO NOT suggest that
large sets of inequalities should be solved by means of simulating such networks on
serial computers. Indeed, the CPU times on SUN Sparc 10 workstation running
MATLAB simulation software ranged from 0.1 s for the network of Fig. 2 to 800s for
the network of Fig. 6. Moreover, while the time needed by the analog neural networks is
independent of the size of the problem (due to the parallel nature of processing), the
CPU times required for the simulation increase with the increase of the number of
inequalities that are represented by such networks.

7. Conclusions

This paper discussed the analog neural networks methodology for solving linear
inequality and/or equality systems in real-time. The paper reviewed known methods
and presented original techniques for the solution of this problem based on the
regularised least squares (LS), least absolute values (LAV) and total least squares (TLS)
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approaches. Furthermore, the paper presented a new, simple and efficient adaptive
learning algorithm in the form of nonlinear differential equations. It has been demon-
strated that these equations can be implemented using only a single neuron with adaptive
weights. The proposed networks are constructed from simple analog elements such as
adders, multipliers, switches, dampers, function generators and limiting integrators.

The proposed algorithms can also be implemented on digital computers converting
the systems of differential equations into appropriate sets of difference equations.

The algorithms are deemed to be particularly well suited for real-time and/or high
throughput rate applications. It has been demonstrated that the analog neural networks
offer a several orders of magnitude improvements in efficiency over the more conven-
tional digital neural nets.
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