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ABSTRACT 
The paper discusses the principles and the algorithm of granular analysis of data in a specific 
context of urban traffic monitoring and control (EIS). The proposed granular information 
processing enables extraction of information on the pattern of journeys from the detailed 
traffic counts. This facilitates progression from the local optimisation of traffic on individual 
crossroads to the more holistic optimisation of traffic in a road network. The proposed EIS 
makes use of readily available stop-line queue data, which is used for adaptive tuning of 
traffic signals, and adds a data processing layer referred to as granular analysis. It is argued 
that granular analysis is preferred to statistical data processing since it does not require any 
assumptions about statistical characterisation of traffic. The granulation algorithm has two 
distinctive features: (i) the information granules are formed by means of hierarchical 
optimisation of information density and (ii) the granules are created as hyperboxes thus being 
readily interpretable in the pattern space. The granular estimates of turning movements are 
calibrated using HUTSIM microsimulator. 
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1.  INTRODUCTION 

Modelling of urban traffic represents a significant conceptual and computational challenge. 
This is because the atomic components of urban traffic, i.e. individual vehicles, are controlled 
by drivers who take into consideration both local traffic conditions and global intentions of 
their individual journeys. Although the local traffic situation can be measured to some degree, 
the global journey intentions are generally known only to the drivers. Furthermore, the driver 
intentions information is a dynamic entity that is not approximated well by some static 
characterisation such as an “origin-destination matrix”.  What is needed is a real-time 
estimation of journey intentions that is economical to deploy and does not compromise the 
privacy of individual drivers. The first requirement points to the use of the existing traffic 
telemetry and the second implies some statistical rather then vehicle-specific journey 
characterisation.  
 The estimation of dynamic origin-destination (O-D) matrices from traffic counts in a 
transportation network has received much attention in the last two decades. Conventionally, 
O-D flow matrices were considered only for certain period of interest and thus were estimated 
with the average traffic count data for that period (Chang, G., & Wu, J, 1994). A 
comprehensive review of research along these lines has been presented by Cascetta E., et al. 
(1984, 1988). Such methods were static in nature and relied on some prior O-D information as 
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well as “standard” driver behaviour to produce a reasonable result. At the other end of the 
spectrum are the O-D estimation models that are based on statistical analysis of detailed 
traffic counts on individual approaches to the intersection. The O-D estimation problem is 
formulated in this case as a problem of minimisation of the prediction error evaluated as a 
discrepancy between the expected and actual traffic counts on all approaches (Nihan N. & 
Davis G., 1987, Cremer M. & Keller H., 1987, Peytchev E., 1999). Although this approach 
can, in principle, deliver accurate estimates of turning movements on the intersection, it 
depends critically on the extensive instrumentation of each intersection, i.e. real-time 
measurements of the incoming and outgoing traffic. 
 In this paper we propose an alternative method that preserves the benefits of real-time 
estimation of turning movements while avoiding the need for extensive instrumentation of 
intersections. We argue that the secondary effect of the right-turning traffic (in UK) on the 
traffic queue provides an adequate approximation of turning movements. The key to this 
analysis is the observation that the reduction of measurement information requires that the 
analysis is performed at a more aggregated (granular) level. 

The rationale for information granulation is deeply rooted in human information 
processing which can be characterised as a constant endeavour to extract and organize 
knowledge about the external world. It is this very ability to abstract detailed information into 
more general information granules that enable humans to be successful in dealing with 
complex systems. Zadeh (1979; 1996; 1997; 1999) promoted a notion of information 
granulation in the framework of fuzzy sets that are particularly well suited for representing 
vague or imprecise data. However, other granulation frameworks such as sets (intervals) are 
quite appropriate in a broad range of situations and have long been used for representing 
physical reality (that is essentially analog) in digital computers. In a nutshell, information 
granules are treated as collections of entities (say numeric readings) that are grouped together 
because of their similarity, functional closeness or any other criterion that captures a feature 
of indistinguishability. Information granules give rise to hierarchies of cognitive entities. 
When forming information granules one needs to reconcile two aspects. On one hand 
information granules are conceptual constructs that do not need to have immediate physical 
counterpart. But, on the other hand they have to be anchored in the world of experimental data 
so as to reflect in some way the reality of the physical world. These two principles point to the 
algorithmic approach to information granulation. 

In this paper we start by describing a detailed algorithm for constructing information 
granules from the experimental data. Subsequently, we show how the derived information 
granules can be combined even further via recursive application of the algorithm so as to 
arrive at the higher levels of data abstraction. In order to achieve information granules that are 
easily interpretable we adopt interval analysis as a formal framework for the description of the 
algorithm.  

2.  PRINCIPLES AND ALGORITHM OF INFORMATION GRANULATION 
In the interest of generality we adopt a set-theoretic formalism for the description of 
information granules. In particular we focus on intervals and their multidimensional versions 
i.e. hyperboxes. The granular properties of sets are straightforward: the larger the size of 
interval, the lower its granularity. So, a suitable measure of granularity might be an inverse of 
the cardinality of a set. In other words the bigger the cardinality of the set, the lower its 
granularity.  

2.1.  Characterization of information granules 
We shall follow here an approach to information granulation proposed in (Bargiela, A & 
Pedrycz, W., 2002a, 2002b) that can be summarised as follows. Information granules are 
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designed in two stages (phases). First, in the entire data set under consideration (in our case a 
time series data), we define a size of a segment (window of granulation), specify the elements 
(data points) within each segment and in sequel use these elements to construct a detailed 
form of the information granule. More formally, we define a mapping 
 

X A
Ω

⇒        (1) 

 
In the above scheme, X denotes an original data set, Ω is a set of disjoined time periods kΩ  

representing windows of observation, and A is a set of information granules. 
Building interval-valued granules arises as a compromise between two evidently 

conflicting requirements 
 

i) the interval should "embrace" as many elements of {xj: j∈Ωk } as possible (to be a 
sound representation of the window of observation) 

ii) the interval should be highly specific. This translates into the requirement of a 
minimal length of this interval (set).  

 
As far as the first requirement is concerned, a cardinality of the set covering elements of Ωk is 
a suitable criterion, that is 

card(I) = ∑
Χ∈ix

k]b,a[ )x(χ           (2) 

where I = [a,b] denotes the interval we are about to construct and  ]b,a[χ  stands for its 
characteristic function,  that is 

⎩
⎨
⎧

=
otherwise 0,

b][a,in  is x if  ,1
)x(]b,a[χ     (3) 

 
The specificity of the interval can be directly associated with its width,  
 

width(I) = width ([a,b]) = b-a     (4) 
 

More precisely, the larger the width of the interval, the lower its specificity. While this 
definition is straightforward, we will be using its slightly enhanced version expressed as  
 

φ (width([a,b]))              (5) 
 

where "φ" is monotonically increasing function of the original width and φ(0) = 1 (with the 
boundary condition facilitating the uniformity of processing of data points and data intervals). 
For instance, a mapping of interest can assume the form 
  

φ(u) = exp(u)                     (6) 
 

Bearing in mind a conflicting nature of the requirements (i) - (ii) that is captured in the form  
 

min  b])) (width([a,         max)I(card →→ φ    (7) 
 

 it is legitimate to take a ratio of these expressions  
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))I(width(
)I(card

φ
σ =              (8) 

 
and determine the interval I so that it maximizes expression (8). In this way, we cope 
simultaneously with the two contributing optimization problems defined in (7). We refer to 
the optimization expressed by (8) as maximization of ‘information density’ of granules. This 
is to distinguish it from the concept of ‘data density’ that is typically represented as a ratio of 
cardinality of a given set over the volume of the pattern space containing this set. 
Consequently ‘data density’ is not defined for a single numeric data (zero volume in pattern 
space).  

The choice of function φ(u) depends on the preference for large or small information 
granules. Figure 1 shows contour plots of the expression (8) obtained with φ(u) defined as in 
(6). It can be seen that the decrease of the gradient of the contours with the increase of the 
cardinality of the granules implies inherent preference for smaller granules. This is an 
advantageous feature as it gives us a possibility of avoiding undue influence of inherently 
local optimization on the more global view of data that is obtained through recursive 
application of the granulation algorithm. An alternative choice of  φ(u)=1+u results in 
constant-gradient contours of (8) and is thus less appropriate in the context of our algorithm. 
A function φ(u)=(1+u)2 results in contour plots that are broadly similar to those obtained with 
φ(u)=exp(u) but it is less convenient numerically. 
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Figure 1. Contour plot of the information density function (8); σ(I)=const.. Transition from 
granule A to B represents a net decrease of information density and is therefore avoided. 
Transition from A to C represents formation of a granule with higher information density. 
 

The above considerations generalize easily to multi-dimensional data. The maximization of 
information density, implied by the expression (8), can be performed for multi-dimensional 
hyperboxes. We consider in this case a ratio of the cardinality of the input data set contained 
in such hyperboxes to a function of volume of the hyperboxes. However, such a direct 
approach creates dependence of the information density measure on the dimensionality of the 
pattern space. So, in order to maintain comparability of granulation results obtained in pattern 
spaces of varying dimensions it is advantageous to consider a dimensionality-invariant 
version of mapping φ(u). This can be given as follows 
 

φ(u)= exp(maxi (ui))*exp(maxi (ui)-minj (uj))    (9) 
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where u=(u1 u2 … un), ui = width([ai,bi]) and i,j=1,2,…,n, is an index of the dimension of the 
pattern space. The first exponent function in (9) ensures that the specificity of information 
granules is maximized through the reduction of the maximum width of the hypercube along 
all dimensions in the pattern space. The second exponent in (9) ensures that the hyperboxes 
are as similar to hypercubes as possible. The above function can be expressed in a more 
compact form 
 

φ(u)= exp(2*maxi (ui)-minj (uj))    (10) 
 

where, i,j=1,…,n. It is clear that (10) is not affected by the dimensionality of the pattern 
space. The maximization of the width of the hyperbox (granule), over all dimensions of the 
pattern space, results in a scalar value that is of the same order regardless of the space 
dimension. Also, the function satisfies the original boundary condition φ(0) = 1, since for the 
point-size data maxi (ui) = mini (ui) = 0, i=1,…,n.  

While, in general, the pattern space X can be any subset of Rn, we restrict the operation of 
the optimization task (8) to a unit hypercube [0, 1]n. Such a restriction does not imply any loss 
of generality of our approach while affording clear computational benefits (with regard to 
mapping φ(u)). 

 

2.2.  The algorithm 
The granulation of data based on maximisation of information density is carried out as a one-
pass process: 

a) Normalize data to a unit hypercube; 
b) Initialize data structures representing cardinality and the width of individual data items 

(1 and 0 respectively for the point-data); 
c) Calculate and store the value of ‘information density’ (as implied by (8)) of 

hypothetical granules formed by any two data items in the input data set. This forms 
an upper-diagonal matrix D of size NxN, where N is the cardinality of the input data 
set. 

d) Find a maximum entry in D; 
e) If the maximum corresponds to an off-diagonal element (i-th and j-th coord):  

• merge the two information items (identified by the i-th row and j-th column) into a 
single information granule, which has width defined by the maximum and 
minimum values of coordinates in each dimension from the two component 
granules 

• update the cardinality of the resulting granule to the sum of the cardinality counts 
of the component granules; 

• update the i-th row and column of D with the information pertinent to the newly 
formed information granule and remove the j-th row and column from D;  

• return to d) 
f) If the maximum corresponds to a diagonal element (i=j): 

• copy the granule to an output list and remove the corresponding row and column 
from matrix D;  

• if the size of matrix D is greater than 1, return to d), otherwise terminate. 
 
Computational complexity of this granulation algorithm is O(N2) owing to the computations 
of matrix D in step c). However, unlike the clustering techniques (such as FCM, (Bezdek, 
1981)), the granulation process has an inherently local character and can be easily applied to a 
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partitioned input data thus circumventing the high computational cost associated with large 
data sets. It is worth emphasizing that the size of matrix D is being reduced in every iterative 
step by one row and one column thus the number of steps equals N-1. 

In contrast to “subtractive clustering” algorithms, the algorithm presented here does not 
make any assumptions about the maximum size of granules. Granules are allowed to grow as 
long as their local data density keeps increasing. Also, the algorithm does not require any 
arbitrary decision about the separation of cluster centers. The formation of closely separated 
granules is largely avoided by the very nature of maximization of information density, which 
tends to increase the size of granule if it means adding sufficiently large number of data items 
(another granule) without undue increase of its volume. If, on the other hand, the increase in 
volume would imply the reduction of information density, the granule does not expand and 
remains well separated from the neighbouring granules. Another distinguishing feature of our 
algorithm is that it allows processing both point-size and hyperbox data. This is an important 
characteristic that allows hierarchical granulation of data. It should be noted that hierarchical 
granulation enables overcoming the limitations of the ‘local view’ of data while supporting 
the application of the algorithm to a partitioned input data set. 

It is worth noting that the number of granulation levels does not need to be defined in 
advance. The hierarchical granulation can simply be carried out until the number of granules 
identified at the subsequent granulation levels does not change. Of course, in any practical 
application the maximum size of granules is frequently pre-defined so that the granules map 
conveniently onto some linguistic entities. In this case the relative weighing of the two 
components in the expression (8) can be adjusted so as to achieve the required granularity. 

2.3.  Assessment and interpretation of information granules 
In the description of the algorithm in the previous section we have relied on the implicit 
assumption that the information granules are topologically “compatible” with the original 
data. This assumption is necessary because after the first step of the algorithm we have a mix 
of data points and hyperboxes in the pattern space. However, it is clear that in the n-
dimensional space a data point P is represented as P=[x1, …., xn] and a hyperbox H is 
represented as an ordered pair of minimum and maximum vertices, H=[xl

1, …., xl
n, xu

1, …., 
xu

n]. So, the two topological entities are in fact defined in Rn and R2n respectively. It is 
necessary therefore to “generalise” the description of data points and make them compatible 
with hyperboxes by considering points as special cases of hyperboxes that have identical 
minimum and maximum vertices, i.e. P=[ x1, …., xn, x1, …., xn]. As a preparation for the 
deployment of the granulation algorithm we double the dimensionality of the input space and 
make it compatible with hyperbox topology. It is important to note that since the hyperboxes 
are already defined in R2n the computational load implied by the increase of the dimension of 
the data point is negligible.  

While the information density associated with the resulting information granules increases 
quite significantly it is of fundamental interest whether this ‘condensing’ retains the essential 
characteristics of data. We can assess the quality of granulation by identifying a limited 
number of representatives of both the original numeric data and the constructed information 
granules. This is accomplished by clustering and identifying prototypes (representatives) of 
the granules, cf (Everitt, B.S., 1974, Kandel, A., 1986). In particular, a fuzzy clustering 
method - a well-known FCM algorithm (Bezdek, 1981) is of interest here.  As a result of this 
clustering mechanism, the method returns a partition matrix. This matrix captures all granules 
in the form of some generalized architecture of fuzzy sets formed over the family of the 
original information granules. However, in contrast to the standard clustering method we do 
not deal with data points but with hyperboxes as input data. As a consequence, the prototypes 
returned by FCM are also in the form of hyperboxes (information granules). In other words, 
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the prototypes represent fully decomposable relations in the feature space in addition to 
representing, through the partition matrix, the fuzzy membership of data in clusters. The 
combination of the two aspects delivers a more comprehensive insight into the granular nature 
of information being summarized by the prototypes. 

One important consequence of using granular prototypes is the ability to appreciate 
instantly the spatial dimensions of the original data. Something that is not possible with point-
size prototypes of the standard FCM. Although the FCM partition matrix contains information 
that represents the area of influence of individual clusters its direct interpretation is quite 
difficult due to the complex topology of the contour plots of the partition matrix. In this sense, 
clustering of granular data affords a better insight into the nature of data.  

Another important consequence is the ability to overcome the well-known bias of the FCM 
algorithm, that of under representing smaller groupings of data. Since the granulation reduces 
the number of information items in the high data density areas, the relative count of granules 
in large and smaller groupings of data evens out. In other words, granulation substitutes 
explicit enumeration (that unduly affects FCM) with an update of the cardinality attribute 
associated with individual granules (that is transparent to FCM). 

3.  EMPIRICAL ASSESSMENT OF TURNING MOVEMENTS 
The recursive information granulation algorithm has been applied to real-life traffic queues 
data collected by the SCOOT – UTC system in Mansfield, Nottinghamshire, UK. While the 
Mansfield SCOOT system includes some 40 intersections we will limit ourselves to the 
discussion of a representative 3-way intersection illustrated in Figure 2. 
 
 

60311g 
‘west’ 

60311e 
‘east’ 60311h 

‘south’ 

SCOOT system 
(inductive loop pulses + 
calibrated network data + 
error correction system) 

Collected data:
- traffic queues 
- signal status 

 
 
Figure 2. Junction “60311” in Mansfield (UK) with 3 measured traffic queues. 
 
The three inductive loops are the measuring devices that count discrete pulses generated by 
cars passing over them. The number of pulses generated by a car is proportional to the length 
of the car and inversely proportional to its speed. So a small vehicle moving slowly and a 
large vehicle moving quickly may generate the same number of pulses. This is actually a very 
advantageous property of this type of measuring devices because it enables focusing on 
generic “road occupancy” rather than specific vehicles. The pulses are weighted on a sliding 
scale so as to ensure that the occasional inductive loop errors do not affect unduly the results. 
The weighted pulses are referred to as Link Profile Units (LPU). The inductive loop 
measurements are combined with real-time readings of traffic signal status and also the 
calibrated travel times between each inductive loop and its corresponding stop-line.  On this 
basis SCOOT is able to estimate the number of vehicles that will arrive at the stop-line during 
the red signalling stage. This estimate, updated in real-time, is referred to as ‘traffic queue 
measurement’ (in LPUs). Since the integration of inductive pulses is prone to systematic 
error, there are additional inductive loops (not shown on Figure 2), which are used to re-set 
this error to zero for some specific queue length. In effect, the SCOOT system has a built-in 
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‘safety net’ for the traffic queue measurements. By monitoring the ‘discharge flows’ from the 
stop-line during the green signalling stage, SCOOT accounts also for the queue remaining 
from the previous signalling stage in the derived traffic queue measurements. 

The original time series consist of 705 discrete measurements for each inductive loop taken 
every 4 seconds. The readings are time-aligned and form a 3-dimensional vector of system 
states for 705 time instances (2820 seconds) as illustrated in Figure 3. 
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Figure 3. Traffic queue data in LPUs. Complete set (705) and a subset (100) readings. 

 
The state vector is normalised so that the maximum value of any coordinate of the vector is 

1.0 and the minimum value is 0.0. A small extract from the 3-dimensional state vector is 
given in Table 1. 
 
Table 1. Normalised state vector for time instances 185 through to 195. 

State 
vector 

Queue - east Queue - west Queue - south 

…    
x(185) 0.4536 0.4731 0.4848 
x(186) 0.4536 0.4731 0.4848 
x(187) 0.4536 0.6774 0.4848 
x(188) 0.4536 0.5054 0.4848 
x(189) 0.4536 0.5914 0.4848 
x(190) 0.4536 0.5591 0.4848 
x(191) 0.5979 0.6022 0.5758 
x(192) 0.4948 0.5806 0.3939 
x(193) 0.4536 0.4731 0.2424 
x(194) 0.4536 0.4731 0.2727 
x(195) 0.2680 0.3548 0.4848 

…    

 
In the first instance we analyse a 3-dimensional time series of changes of traffic queues in 

the links ‘60311g’, ‘60311e’ and ‘60311h’. We will refer to these links as ‘west’, ‘east’ and 
‘south’ respectively. Clearly the expectation is that the relative changes of traffic queues in 
consecutive time periods recorded in east and west links will reveal the information about the 
right-turning traffic from the west link (into south link). 

At the start of the granulation algorithm the state vector for each time instance represents a 
point-value of queues on the corresponding approaches to the intersection. However, as the 
granulation proceeds, the original point-values are expanded into intervals specifying 
minimum and maximum queues for each granule on each of the three approaches. This is 
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accommodated by the increase of the dimensionality of the state vector from 3 to 6, which 
corresponds to specifying hyperboxes in the 3-dimensional pattern space. An extract from the 
6-dimensional state vector is given in Table 2. 

 
Table 2. Normalised 6-dimensional state vector for time instances 185 through to 195 at the 
start of the granulation process. 

State 
vector 

Min  
Queue - east 

Min 
Queue - west 

Min 
Queue - south 

Max 
Queue - east 

Max 
Queue - west 

Max 
Queue - south 

…       
x(185) 0.4536 0.4731 0.4848 0.4536 0.4731 0.4848 
x(186) 0.4536 0.4731 0.4848 0.4536 0.4731 0.4848 
x(187) 0.4536 0.6774 0.4848 0.4536 0.6774 0.4848 
x(188) 0.4536 0.5054 0.4848 0.4536 0.5054 0.4848 
x(189) 0.4536 0.5914 0.4848 0.4536 0.5914 0.4848 
x(190) 0.4536 0.5591 0.4848 0.4536 0.5591 0.4848 
x(191) 0.5979 0.6022 0.5758 0.5979 0.6022 0.5758 
x(192) 0.4948 0.5806 0.3939 0.4948 0.5806 0.3939 
x(193) 0.4536 0.4731 0.2424 0.4536 0.4731 0.2424 
x(194) 0.4536 0.4731 0.2727 0.4536 0.4731 0.2727 
x(195) 0.2680 0.3548 0.4848 0.2680 0.3548 0.4848 
…       
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Figure 4. FCM prototypes identified for original measurements of changes of traffic queues 
on “east” and “west” links. 
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Figure 5. FCM prototypes identified for level-one and level-two granulated measurements of 
changes of traffic queues on “east” and “west” links. 
 

We apply the granulation and FCM-based identification of granular prototypes to this 6-
dimensional state vector and visualise the results by projecting them onto the 2-D “east-west” 
space. The FCM prototypes identified for the original data are illustrated in Figure 4 and the 
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level-one and level-two granular prototypes are illustrated in Figure 5. The exact numerical 
coordinates of the FCM prototypes in the normalised space for level-one and level-two 
granulation are given in Table 3 and Table 4 respectively. 

 
Table 3. Coordinates of the minimum and maximum vertices of FCM prototypes  
(hyperboxes) evaluated for level-one granulation. 

FCM 
Prototype 

Min - east Min - west Min - south Max - east Max - west Max - south 

1 0.2950 0.1246 0.5222 0.3686 0.1968 0.5729 
2 0.4983 0.6706 0.5135 0.5724 0.7577 0.5943 
3 0.4886 0.6071 0.1073 0.5348 0.7063 0.1802 
4 0.4135 0.4428 0.5125 0.4695 0.5096 0.5697 

 
 

Table 4. Coordinates of the minimum and maximum vertices of FCM prototypes 
(hyperboxes) evaluated for level-two granulation. 

FCM 
Prototype 

Min - east Min - west Min - south Max - east Max - west Max - south 

1 0.4647 0.5852 0.0945 0.5948 0.7686 0.2951 
2 0.4753 0.5882 0.5059 0.6433 0.7791 0.6882 
3 0.1964 0.0717 0.4970 0.3568 0.2250 0.6088 
4 0.2852 0.3485 0.5085 0.4416 0.5267 0.6744 

 
We highlight here the coordinates of the prototype 4 as it contains information pertinent to 

the turning movement estimation. The “min-east” and “max-east” values for this prototype 
are below the average value of 0.5 indicating that the queue length on the “east” approach is 
decreasing. However, the “west” approach, as characterised by the prototype 4, is different in 
that the queue can be either decreasing (“min-west” < 0.5) or increasing (“max-west” > 0.5). 
The reason for the increasing queue length on the “west” approach is that the right-turning 
traffic can be impeded by the traffic from the “east” approach. Consequently the ratio:  
(“max-west” – 0.5) / (“max-west” – “min-west”) becomes a measure of the right-turning 
traffic (denoted here as Tw-s, where the subscript w-s means traffic from “west” to “south” 
direction). 

In order to verify the robustness of the above turning movement estimate, we evaluate it 
for level-one and level-two FCM prototypes as detailed in Table 3 and 4. For level-one 
granulation we obtain 

 
Tw-s = (0.5096 – 0.5) / (0.5096 – 0.4428) = 0.1437 
 

and for level-two granulation we have 
 
Tw-s = (0.5267 – 0.5) / (0.5267 – 0.3485) = 0.1498 
 

It is clear from the above that the turning movement estimate does not depend significantly on 
the level of granulation of data and that the inherent information about the right-turning traffic 
is preserved in the information granules. In other words, the granular data analysis provides a 
good basis for the interpretation of traffic queues data. However, in order to make a link 
between the Tw-s index and the percentage of right-turning traffic on this intersection one has 
to take into account driver behaviour in terms of acceleration and gap-acceptance parameters. 
If the average driver behaviour is more dynamic (smaller gaps accepted and higher 
acceleration) the index Tw-s will translate into higher percentage of right-turning traffic. 
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Conversely, if the average driver behaviour is less dynamic, the index Tw-s will translate into a 
lower percentage of the right-turning traffic.  

The quantification of the drivers’ behaviour is in itself a complex problem mainly because 
of the lack of direct measurement data that would support such quantification. However, we 
have already reported in our earlier publications (Kosonen et al, 1990, 1998, 1999, 2000) that 
it is possible to derive information about average driver behaviour from real-time traffic 
simulations; i.e. simulations that receive actual lane occupancy data as its input and compare 
the simulated and actual traffic readings.  

 

4.  CONCLUSION 
Granular analysis of data offers a powerful tool for creation of information abstractions in the 
context of data that cannot be easily characterised by statistical relationships. Granulation is 
based on the intuitive concept of data similarity/proximity without making any reference to 
such statistical descriptors as mean/variance/probability distribution etc. We have shown, 
using the example of urban traffic EIS, that the essential characteristics of data are preserved 
in the process of information granulation and that the quantification of these characteristic 
features does not depend significantly on the level of information granulation (abstraction).  

In the context of traffic data analysis, the work reported here gives basis for a new 
approach to urban traffic monitoring and control; one that is based on the use of real-time 
traffic simulations coupled with granular analysis of detailed traffic readings. By focusing on 
the formation of semantically rich and robust information abstractions the granular analysis 
can be used as a basis for the development of large-scale system models.  
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