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Abstract: In this paper we introduce a new clustering method and apply it to 
brain magnetic resonance imaging (MRI) lateral ventricular compartments 
segmentation. The method uses Gaussian smoothing to enable fuzzy c-mean 
(FCM) to create both a more homogeneous clustering result and reduce effect 
caused by noise. With the objective of finding the optimal clustering results, we 
present a weighted clustering scheme which is applied to a Gaussian smoothed 
image using bootstrapping approach of feature weighting. The scheme is called 
weighted FCM with Gaussian smoothing (WGFCM). In addition to the 
observations on the clustering results of the MR images, we use validity 
functions and clustering centroids to evaluate the clustering results. Compared 
with the standard FCM with or without Gaussian smoothing, we found that the 
proposed scheme provides a better clustering performance for brain MRI lateral 
ventricular compartments segmentation. 
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1 Introduction 

In medical image processing and analysis, segmentation is an indispensable step. 
magnetic resonance imaging (MRI) has become a particularly useful medical diagnostic 
tool for cases involving soft tissues, such as in brain imaging (Worth et al., 1997a;  
El-Baz et al., 2006; Bezdek et al., 1993; Caviness et al, 1989). Image segmentation is the 
process of assigning pixels to regions sharing common properties. MRI segmentation 
assumes great importance in clinical applications and scientific research projects. Despite 
the existence of many MRI segmentation frameworks, brain MRI segmentation is still a 
subject requiring intensive exploration due to the numerous challenges (Bezdek et al., 
1993; Xiao et al., 2007a, 2007b; Liu et al., 2001; Brandt et al., 1994; Pham and Prince, 
1999; Wu et al., 2003; Worth et al., 1997b). 

The aim of this paper is to introduce a way to provide an improved solution on our 
previous works (Xiao et al., 2007a, 2007b) to automatically select optimal feature 
weighting factors using the method proposed by Hung et al. (2008) for both original and 
Gaussian smoothed image features. In addition to the observations of the clustering 
results, we applied several measurement methods such as clustering validity functions 
with added noise and measurements of displacement of clustering centroids due to noise, 
so as to provide objective evaluations of the clustering results from this scheme. 

2 Background and related works 

MRI segmentation assumes great importance in research and clinical applications. Noise, 
inhomogeneous pixel intensity distribution and blunt boundaries in the medical MR 
images caused by MR data acquisition process are the main problems that will affect the 
quality of MRI segmentation (Bouchachia and Pedrycz, 2006; Wu et al., 2003; Worth et 
al., 1997b). One principal source of noise is the ambient electromagnetic field picked up 
by the radiofrequency (RF) detectors acquiring the MR signal, and another is the object 
or body being imaged. Signal-to-noise ratio (SNR) is used as a synthetic index to 
quantify the totality of noise influence and to characterise the effectiveness of any MRI 
examination (Cai et al., 2007). As a result, added noise with specific SNR can be used for 
examining the clustering result affected by noise. 

Fuzzy c-means (FCM) clustering method (Dunn, 1974; Bezdek, 1981) is a widely 
used unsupervised pattern recognition method for multi-spectral MRI segmentation 
(Bezdek et al., 1993). However standard FCM algorithm has several disadvantages. 
Firstly, it does not fully utilise the spatial information of an image, and is sensitive to 
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noise. To improve the clustering result of FCM, Pedrycz and Waletzky (1997) took 
advantage of the available classified information and actively applied it as part of their 
optimisation procedures. Ahmed et al. (2002) modified the objective function of the 
standard FCM algorithm to allow the labels in the immediate neighbourhood of a pixel to 
influence its labelling. The modified FCM algorithm improved the results of conventional 
FCM methods on noisy images. However, the way in which they incorporate the 
neighbouring information limits their application to single-feature inputs. 

Bouchachia and Pedrycz (2006) proposed a semi-supervised FCM method integrating 
kernel-based distance in the clustering algorithm. Chuang et al. (2006) applied the spatial 
information into the FCM algorithm by incorporating spatial function into the 
membership function to take advantage of correlation in image pixels neighbourhood to 
reduce the effect of noise and obtain more homogeneous clustering results. 

Dulyakarn and Rangsanseri (2001) proposed a semi-supervised FCM algorithm 
which alternates between conventional FCM and FCM with spatial information. However 
in their modified membership functions, the way of summing up neighbouring pixels 
tends to blur the clustering result and degrades the edges. Another problem of applying 
this approach alone is that the feature weights are fixed and clustering results are unable 
to be tuned when multiple feature inputs are processed by the FCM algorithm. 

Although the introduction of local spatial information to the corresponding objective 
functions enhances their insensitivity to noise to some extent, they are not completely 
immune to noise and outliers, especially in the absence of prior knowledge of the 
characteristics of the noise. 

To alleviate this problem, Cai et al. (2007) further modified FCM algorithm and 
introduced a new way to make trade-off between the removal of noise and the 
preservation of details. However this method does not really take into account the 
multiple feature domains. 

Since the FCM algorithm deals efficiently with multi-dimensional data, we proposed 
a study (Xiao et al., 2007a) based on the combination of the original and the Gaussian 
smoothed image data to improve clustering results. As the conventional FCM assumes 
equal importance of individual feature, the clustering performed on certain real world 
problems may not be acceptable. To make FCM perform better in such applications, we 
proposed a solution of adjustable feature weighting factors in one of our previous work 
(Xiao et al., 2007b). However, the computational burden associated with finding the 
optimal weights is significantly heavy through iteratively changing weighting factors. 
This is because the assessment of the validity of FCM results can be done only after the 
FCM computations are completed. The refinement of the weighting factors is therefore a 
slow process. However, our previous work (Xiao et al., 2007b) has demonstrated that 
FCM is sensitive to the selection of distance metric and optimal feature weight factors 
will lead to better clustering results. Therefore, an automatic method to find the optimal 
weighting factors is required. 

Wang et al. (2004) applied a feature-weight learning approach based on a similarity 
measure proposed by Yeung and Wang (2002). More recently, Hung et al. (2008) 
proposed a feature-weights selection method based on statistical variations in the input 
data by using bootstrapping (Efron, 1979) approach and applied it to colour image 
segmentation. 

Several previous works (Chuang et al., 2006; Worth et al., 1997b) have worked 
towards solving or alleviating these problems. To further improve the clustering results 
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over the related works, in addressing the above mentioned problems and taking brain 
MRI lateral ventricular compartments as the case for the research, the novel weighted 
FCM (WGFCM) clustering scheme is designed to allow feature weighting factors 
automatically obtained for both original and Gaussian smoothed data set features. 

3 FCM clustering: an overview 

Data clustering is the process of dividing data elements into classes or clusters so that 
items between different classes are dissimilar as possible (Bezdek, 1974). Depending on 
the nature of the data and the purpose for which clustering is being used; similarity 
measure such as distance, connectivity, and intensity controls how the clusters are 
formed. FCM is a typical clustering method which groups one piece of data to two or 
more clusters, and associates with each element a set of membership levels. These 
membership levels indicate the strength of the association between that data element and 
a particular cluster. Fuzzy clustering is a process of assigning these membership levels, 
and then using them to assign data elements to one or more clusters (Bezdek, 1974). 

Let X (x1, x2, x3,…, xN) denotes an image with N pixels to be partitioned into c 
clusters, where xi represents multi-feature data. The algorithm is an iterative optimisation 
that minimises the cost function defined as follows: 

2

1 1

,     1 ,
N c

m
ij j i

j i

J u x v m
= =

= − ≤ < ∞∑∑  (1) 

where uij represents the degree of membership of data xj in the ith cluster, vi is the ith 
cluster center, *  is a norm representing the Euclidean distance which expresses the 
similarity between measured multi-feature data and the cluster center (Bezdek et al., 
1993; Chuang et al., 2006; Hung et al., 2008), and m is a real constant greater than 1 
which controls the fuzziness of the resulting partition. 

The membership function represents the probability that a pixel belongs to a specific 
cluster which depends on its distance from each cluster centers in the feature domain. The 
membership functions and cluster centers are iteratively updated until the cost function Jm 
in equation (1) is minimised as follows: 
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The iteration will stop when { }1max ,p pJ J σ+ − <  where σ is the termination criterion 

between 0 and 1, and p is the iteration step. 
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4 Weighted FCMs with Gaussian blurring scheme 

4.1 FCMs combined with Gaussian smoothing 

The Gaussian 2-D convolution operator is used to blur or smooth image and remove 
detail and noise. A 2-D circularly symmetric Gaussian has the form: 

( )
2 2

2 2
1,

2 2
x yG x y e

πσ σ
+

= −  (4) 

It provides gentler smoothing and preserves edges better than a similarly sized mean filter 
because Gaussian function outputs a ‘weighted average’ of each pixel neighbourhood, 
with the average weighted more towards the value of the central pixel  
(Shapiro and Stockman, 2001; Xiao et al., 2007a). As the standard FCM algorithm 
supports multiple feature inputs, the original image and its Gaussian filtered image pixel 
values can be combined as a multi-dimensional matrix. By combining all the features into 
the multi-dimensional space, clustering results will be affected by both the original and 
the smoothed image data, becoming more noise-insensitive and homogeneous. 
Algorithm 1 Feature weights adjustable FCM clustering 

• Input: image I; array of feature data; array of feature weighting factors 

• Set of number of clusters, c; number of maximum iterations, max 

• Output: Set of clustered regions. 
1 Set the initial membership value, uij 
2 for p = 1 to max do 
3 

Update the new center points of clusters: 1

1

N
m
ij j

j
i N

m
ij

j
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=

=

=
∑

∑
; 

4 
Estimate the distance matrix: ( )2

1

M

ij k jk ik
k

D α x v
=

= −∑ ; 

5 
Calculate the cost function: 2
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N c
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J u D
= =
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Update the new membership function: 

2
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mij

kjk

u
D
D

−

=

=

⎛ ⎞
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⎝ ⎠
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7 if { }1p pJ J σ+ − <  {convergence condition} 

8 break; 
9 end for 
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4.2 FCMs with adjustable feature weighting factors 

4.2.1 Description 

In the conventional FCM, as previously discussed, each input feature weighting to the 
standard Euclidean distance function is exactly the same. However in situations where 
one or more input features need to be emphasised, and other features to be diminished, 
the standard FCM algorithm is incapable of providing fine tuning for clustering. 

By expressing j ix v−  with Euclidean distance function, Dij, as in standard FCM, 

equation (1) can be expressed as: 

2

1 1

N c
m
ij ij

j i

J u D
= =

=∑∑  (5) 

where Dji is the distance of data xjk from center of ith cluster, vik in the kth dimension, N is 
the number of data points and M is the number of features 

( )2
1

M

ij jk ik
k

D x v
=

= −∑  (6) 

To adjust the weighting of each input feature, equation (5) can be modified by adding 
factors αk which becomes:  

( )2
1

M

ij k jk ik
k

D α x v
=

= −∑  (7) 

Similar to the standard FCM algorithm, distances calculated by equation (5) will be used 
in all the steps of the FCM membership calculation. 

4.2.2 Algorithm steps 

The algorithm of adjustable feature weighting FCM is described as in Algorithm 1. 

4.3 Bootstrapping approach to feature-weight selection 

4.3.1 Description 

It can be concluded from principal components analysis (PCA) that in multivariate 
analysis, greater variation in some features of the data provides important information. 

Standard deviation is a usual measure on variability of a random sample, defined as 

( )21

1

1,        where .
1

n
njj

j
j

x x
s x x

n n
=

=

−
= =

−

∑
∑  (7) 

Using Karl Pearson’s coefficient of variation which is independent of pure numbers, 
defined by 
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.sCV
x

=  (8) 

For a random sample of  Xj = (xj1,…, xjp) representing jth sample for j = 1,…, n, then the 
coefficient of variation of kth feature is defined as: 

( ) ( )
2

1

1

/ 1 1,      where  ,   1,...,

n
njk kj

k jk
k j

x x n
CV x x k p

x n
=

=

− −
= = =
∑

∑  (9) 

The kth feature-weight can be defined as the expectation of normalised CVk, i.e., 

( ) ( )

1

,      where  ,   1,...,k
k k k k p

kk

CV
w E W ωdF ω W k p

CV
=

= = = =∫ ∑
 (10) 

One of the method to estimate the value of wk is by re-sampling the original data, X to 
create B number of replicate datasets by using bootstrapping method. 

From the calculation of the sample mean of wk for all B number of replication, the 
estimated feature weight wk is found as below 

( ) ( )
( )

( )1

1

1ˆ ,      where  ,   1,...,
B k

k k k pb
kk

CV b
w W b W b k p

B CV b=

=

= = =∑
∑

 (11) 

4.4 Weighted fuzzy c-means and Gaussian smoothing (WGFCM) 

4.4.1 Description 

In many cases, there is only one input feature available for clustering, FCM needs to be 
tuned for an optimal clustering result while trying to be insensitive to noise. One feature 
can be combined with the Gaussian smoothed feature of itself to create an input data. 
Then the feature weights can be calculated using the bootstrapping approach of feature-
weight selection to be applied into the FCM with adjustable feature weighting factors as 
the WGFCM, for fine tuning to achieve more optimised clustering results. 

4.4.2 Algorithm steps 
Algorithm 2 Combining Gaussian smoothed and original images by WGFCM 

Input: 

• image I 

• set of number of clusters, c; number of maximum iterations, max 

• size of Gaussian filter, size and value of Gaussian standard deviation, sigma 

• estimated optimised feature weighting by bootstrapping of I and its Gaussian blurred data. 
Output: Clustered optimised clustering result 
1 Convert image data I to an array of original feature data, Data1 
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Algorithm 2 Combining Gaussian smoothed and original images by WGFCM (continued) 

2 Create 2-D Gaussian low pass filter PSF by Gaussian kernel function FGau with size and 
standard deviation, sigma: 

( ), ;GauPSF F size sigma=  

3 Convolve Data1 by the filter PSF to create Gaussian smoothed Data2: 
( )2 1, ;Data G Data PSF=  

4 Create an input data array Data by combining Data1 and Gaussian smoothed Data2: 
[ ]1, 2 ;Data Data Data=  

 
Find the estimated optimised feature weighting factors ( )

1

1ˆ  
B

k kb
w W b

B =
= ∑  from 

bootstrapping of Data by equation (11). 
5 Apply the feature weighting factors on WGFCM as described in Algorithm 1. 

5 Validity functions for fuzzy clustering 

5.1 Clustering validity functions based on partition coefficient and partition 
entropy 

Fuzzy partition is used in this paper to evaluate the performance of clustering in a 
quantitative way. The representative functions for the fuzzy partition are partition 
coefficient Vpc (Bezdek, 1974) and partition entropy Vpe (Bezdek, 1975) defined as 
follows: 

2

1 1

N c

ij
j i

pc

u

V
N

= ==
∑∑

 (12) 

1 1

log

.

N c

ij ij
j i

pe

u u

V
N

= =

− ⎡ ⎤⎣ ⎦
=
∑∑

 (13) 

The idea of these validity functions is that the partition with less fuzziness means better 
performance. In both equation (9) and (10), uij (i = 1, 2,… c; j = 1, 2,… N) is the 
membership of data point j in cluster i. The closer this value is to unity the better the data 
are classified. As a result, the best clustering is achieved when Vpe is minimal and Vpc is 
maximal (Chuang et al., 2006). 

5.2 Clustering validity functions based on geometric sample structure 

The idea of validity functions based on measuring geometric data structure is that 
samples within one partition should be compact and samples between different clusters 
should be separate. To quantify the ratio of total variation within clusters and the 
separation of clusters, Fukuyama and Sugeno (1989) proposed Fukuyama-Sugeno 
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validity function Vfs,, Xie and Beni (Xie and Beni, 1991) proposed Xie-Benie validity 
function Vxb. 

Vfs is defined as follows: 

( ) ( )2 2 2

1 1

N c

fs ij j i i
j i

V u x v v v
= =

= − − −∑∑  (14) 

and Vxb is defined as: 

( )

{ }( )

2 2

1 1
2

,

,      where  
* min

N c

ij j i
j i

xb i k
k ii k

u x v

V v v
N v v

= =

−

= ≠
−

∑∑
 (15) 

An optimal clustering result generates samples that are within one cluster and samples 
that are separated between different clusters. Minimised Vfs or Vxb is expected to lead to a 
good partition. 

Partition coefficient and partition entropy is a class of validation functions that uses 
only the membership function to evaluate the partitioning of the clusters. Their 
disadvantages are that it does not take into account the geometrical properties of the data 
and it depends monotonically on the number of clusters (Hoppner, 1999) while 
Fukuyama-Sugeno and Xie-Beni validity function however quantifies the performance of 
the clustering by taking into account the total variation within each clusters and the 
separation between clusters. Their main disadvantage is that it decreases monotonically 
when the number of clusters is very large (Xie and Beni, 1991). 

6 Experimental results 

The original images in Figures 1(a) and 1(b) were collected from (The Whole Brain 
Atlas, 2008). To focus on lateral ventricles segmentation, one pair of T1-weighted and 
T2-weighted MRIs in the trans-axial plane with the same slice number (which indicates 
they were taken from the same area of the brain) that displays the most noticeable lateral 
ventricular compartments were selected. To demonstrate the effect of noise when 
different feature weighting factors are applied on the segmentation processes, noisy 
images have been created by adding Gaussian white noise with a specific SNR value to 
the original images. 

Conventional FCM with the combined features of T1 and T2 images as shown in 
Figures 2(a) and 2(b) is able to classify MRI images. However, the two parts of the lateral 
ventricular compartments as shown in Figures 3(a) and 3(c) are joined together in 
different levels; by combining the original image and the Gaussian smoothed image 
features, its counterpart as shown in Figures 3(b) and 3(d) shows the two fully separated 
compartments. Adding Gaussian smoothed image data into FCM with the selected feature 
weight factors reduces the number of spurious blobs, and the segmented images are more 
homogeneous. 
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Figure 4 shows the clustering result after applying standard FCM and WGFCM with 
feature weighting factors of α1 = 0.5150 / α2 = 0.4850 to noise contained MRI under 4 
clusters. 

It can easily be seen that the standard FCM creates a lot more wrong clusters due to 
the effect from added noise. In Figure 5, inside the segmented ventricular compartment as 
can be seen in Figure 5(b), the clustering result retrieved from WGFCM has much less 
pixels of other clusters than its counterpart in Figure 5(a). 

Figure 1 (a) T1 and (b) T2 original images. (c) T1 and (d) T2 images added with noise of  
SNR = 10 

    

Figure 2 Segmented images of MRI images using FCM with features of (a) T1 + T2 images 
under 3 clusters; (b) T1 + T2 images under 5 clusters; (c) WGFCM with weighting 
factors of 0.5066/0.4934 on T1 image under 3 clusters, Gaussian filter kernel in size of 5 
and sigma of 5; (d) WGFCM with weighting factors of 0.5063/0.4937 on T2 image 
under 5 clusters, Gaussian filter kernel in size of 5 and sigma of 5 

    

Figure 3 Extracted lateral ventricular compartments after FCM clustering with features of (a) 
T1 + T2 images under 3 clusters; (b) WGFCM with weighting factors of 0.5066/0.4934 
on T1 image under 3 clusters, Gaussian filter kernel in size of 5 and sigma of 5; (c) T1 + 
T2 images under 5 clusters; (d) WGFCM with weighting factors of 0.5063/0.4937 on T2 
image under 5 clusters, Gaussian filter kernel in size of 5 and sigma of 5 

    

 

(a) (d)(b) (c)

(c)

(a) (b) (c) (d)

(d)(b) (a) 
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Figure 4 Segmented images of noisy of SNR = 10, MR images using FCM with features of T1 
images under 4 clusters by: (a) standard FCM; (b) WGFCM of α1 = 0.5150 /  
α2 = 0.4850 under 4 clusters 

  

Figure 5 Clustering results of using original T2 MRI with SNR = 5 noise added as input features 
under 4 clusters by: (a) standard FCM; (b) WGFCM with feature weighting factors of  
α1 = 0.5365 / α2 = .0.4635 

  

Figure 6 Comparison of the validity functions result of (a) Vpc and Vpe (b) Vxb for clustering 
results of images using FCM and WGFCM (see online version for colours) 

 
(a) 

(b)(a) 

(b)

(a) 

(a) 
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Figure 6 Comparison of the validity functions result of (a) Vpc and Vpe (b) Vxb for clustering 
results of images using FCM and WGFCM (continued) (see online version for colours) 

 
(b) 

Table 1 Centroids values retrieved in FCM and WGFCM on original or noise added MR images 

Standard FCM on 
original image 

 Standard FCM on 
original image with 

added noise 

 WGFCM on original 
image with added 

noise 

 

Feature 1 Feature 2  Feature 1 Feature 2  Feature 1 Feature 2 

Centroid 
value 

1.1228 1.179  7.2773 11.6389  7.0639 17.4937 

Centroid 
value 

62.2946 172.9436  48.4892 130.1352  82.8444 149.0547 

Centroid 
value 

83.72 42.537  88.2646 21.1917  83.2317 22.5638 

Centroid 
value 

139.724 107.9093  155.6065 119.1692  123.1686 94.1849 

Centroid 
value 

197.7957 83.5036  227.2078 81.0297  221.1783 88.7781 

Table 2 Clustering validity function evaluation on standard FCM on T1 + T2 MRI and WGFCM 
with Gaussian smoothed T1 with filter kernel in size of 5 and sigma of 5 

Cluster 
number FCM type with Vpc Vpe Vxb Vfs 

Standard FCM on 
T1+T2 

0.8400 0.1234 4.7732 –2.6645e+008 3 

WGFCM on T1+T2 0.8872 0.0894 4.1038 –4.4116e+008 
Standard FCM on 
T1+T2 

0.8073 0.1593 4.63865 –3.0245e+008 4 

WGFCM on T1+T2 0.8703 0.1087 3.2298 –4.5236e+008 
Standard FCM on 
T1+T2 

0.7967 0.1789 3.32675 –3.0693e+008 5 

WGFCM on T1+T2 0.8498 0.1299 2.4717 –4.5440e+008 

(a) 
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Table 3 Clustering validity function evaluations on standard FCM and WGFCM on brain MRIs 
with added noise 

Image Cluster 
number FCM type Vpc Vpe Vxb Vfs 

Standard FCM 
on T1+T2 

0.7119 0.2252 8.1326 –1.522e+008 3 

WGFCM on 
T1+T2 

0.7914 0.1666 5.9239 –3.152e+008 

Standard FCM 
on T1+T2 

0.6570 0.2883 6.9921 –1.677e+008 4 

WGFCM on 
T1+T2 

0.7387 0.2175 5.4691 –3.248e+008 

Standard FCM 
on T1+T2 

0.6198 0.3349 5.8634 –1.782e+008 

Noise 
added 
MR 
images 
SNR = 5 

5 

WGFCM on 
T1+T2 

0.6935 0.2642 5.3856 –3.260e+008 

Standard FCM 
on T1+T2 

0.7787 0.1769 6.4997 –2.017e+008 3 

WGFCM on 
T1+T2 

0.8404 0.1304 5.4512 –3.681e+008 

Standard FCM 
on T1+T2 

0.6932 0.2551 6.7743 –1.822e+008 4 

WGFCM on 
T1+T2 

0.7753 0.1875 4.7989 –3.495e+008 

Standard FCM 
on T1+T2 

0.6557 0.2962 6.6712 –1.938e+008 

Noise 
added 
MR 
images 
SNR = 10 

5 

WGFCM on 
T1+T2 

0.7328 0.2270 4.9956 –3.467e+008 

7 Analytical comparison and discussion 

To evaluate the noise sensitivity of WGFCM against conventional FCM, T1- and  
T2-weighted MR images as shown in Figures 1(a) and 1b) are added with noise of  
SNR = 5. Firstly using original images as input features for standard FCM clustering, the 
retrieved centroid values are recorded. Noise added images are then applied as input 
features for conventional FCM and WGFCM clustering. 

Figure 6 compares the validity functions result used to evaluate the performance of 
FCM clustering for six images. Based on the rules of validity functions measurements 
where ‘The best clustering is achieved when Vpe and Vxb is minimal and Vpc is maximal’ 
the clustering results are better for WGFCM than the standard FCM with features from 
T1 and T2 images. 

Due to the fact that added noise will cause the centroid value of each cluster to be 
changed after FCM clustering, each corresponding centroid is displaced after noise is 
added. The sensitivities to noise of FCM and WGFCM can then be compared by the 
mean of each cluster centroids displacement. Table 1 tabulates the retrieved centroids 
values. It can be calculated that the average displacement in conventional FCM and 
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WGFCM are 25.585 and 22.866, respectively. WGFCM is showing stronger insensitivity 
to noise than conventional FCM. 

As can be seen in Table 2 and Table 3, whether using original or noise added MR 
images, the validity functions results retrieved from WGFCM clustering method for Vpc is 
greater, and Vpe, Vfs and Vxb are less than that from standard FCM. This shows that in 
WGFCM, better clustering performance and more noise-insensitive results can be 
obtained. 

As a result, FCM with adjustable feature weights allows validity functions to find 
appropriate weighting factors to correct the errors in the classification caused by noise. 

8 Conclusions 

FCM is one of the most well-known clustering algorithms. But it is sensitive to noise and 
its performance is limited by the equal feature weights of the standard FCM. To make 
this method more suitable for the application of brain MRI ventricular compartments 
segmentation, an intensive study on Gaussian smoothed image with weighting factors 
selection using bootstrapping approach known as WGFCM is conducted. The method 
was experimented on MRI images with and without added noise. Apart from observation 
of the clustering results in the specific application of brain ventricular compartment 
segmentation, clustering centroid movements caused by the added noise, and four 
clustering validity functions are measured. Results show that our proposed WGFCM 
scheme is more insensitive to noise and leading to better clustering performance. 
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