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Abstract: In this paper, we report an interesting observation about Denoising suggested by optimization ex-
periments. Denoising is usually performed in order to minimize the detrimental effects that noise has on the
subsequent stages of an algorithm. Thus Denoising is typically carried out as an early pre-processing stage before
other core functions are applied. In the context of optimizing image processing chains for membrane detection,
we gathered statistics of processing chains which exhibited an average F1 score larger than 90%, and observed
that not one was found to use a Denoising function as its 1st step in the processing chain. On the contrary, the
optimization process tended to choose Denoising as a middle processing component, and generally selected im-
age enhancement as an earlier component. We conclude, that at least in the context of this membrane detection
problem, it is better to enhance information (enhancement) before cleaning it (filtering).

Keywords: membrane detection, denoising, segmentation, image processing, optimization.

1. Introduction

One of the aims of our research is to identify the best possi-
ble sequence of image processing functions; capable of effi-
ciently and accurately detecting neuronal membranes whilst
ignoring and/or removing extraneous organelles from the
processed output [1]. The problem of membrane detection,
which can be seen to belong to the general class of segmen-
tation problems, is characterized by several issues, includ-
ing over and under segmentation due to similarities between
membrane and non-membrane material. Many algorithms
depend on ground-truth for training and require large num-
bers of labelled training samples which is expensive and
generally involves several time consuming processes [1].
In order to detect membranes whilst eliminating extraneous
organelles we have proposed an approach called Image Pro-
cessing Chain Optimization (IPCO). This approach (1) at-
tains competitive accuracy levels whilst not requiring an ex-
cessively long tuning phase, (2) does not require specialized
hardware, (3) leads to chains consisting of short sequences
of basic processing steps which are efficient and easy to in-
terpret [1], (4) is simple to use [1] and (5) is flexible and can
be applied to many different types of datasets. In carrying
out our experiments we have discovered several interesting
facts about optimal image processing chains, some of which
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are presented in this paper.
When carrying out our research in membrane detection

and organelle elimination, where activities ranged from
manual fine-tuning [1] to automated segmentation using
IPCO, we found that, at least for this membrane detection
problem, Denoising typically appears later in the sequence
(or chain) of processing functions. Moreover, in 10 cases
out of 10 (including the best chain), we find contrast en-
hancement before Denoising, suggesting that details need
to be enhanced before cleaned, which could be encapsu-
lated by the heuristic “enhance it before you lose it”. [2] In
many cases even classification is done before Denoising.

This paper is structured as follows: section 2 gives a brief
overview of image processing workflows with special em-
phasis on denoising; section 3 provides an overview of the
IPCO approach and the data-set used; section 4 describes
experimental results and preliminary analyses; section 5
concludes the paper.

2. Background Study

According to Rafael C. Gonzales et.al [3], image analysis
is a research area lying somewhere in between image pro-
cessing and computer vision. According to this there are
three types of processing, distinguished by different levels
of abstraction, which are: low-level; mid-level; and high-
level. Low-level processing involves: image preprocessing
to reduce noise, contrast enhancement, and image sharpen-
ing. Mid-level processing involves: image segmentation,
description of objects in a form suitable for further compu-
tational processing and classification or recognition of in-
dividual objects. Finally, high-level processing involves:
making sense of an ensemble of recognized objects and per-
forming cognitive functions associated with human vision.

In this paper, we focus on a crucial low-level component,
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(a) Original image (b) After Denoise-Filter

Figure 1: Image Before and After Denosing

which is Denoising, in the context of serial section Trans-
mission Electron Microscopy (ssTEM). Denoising plays an
important role in many image based applications, such as
image restoration, visual tracking, image registration, im-
age segmentation and image classification. In the ssTEM
context, noise can be seen to consist of two main parts: the
quantum noise of the electron beam and the noise originat-
ing from the image recording system [4]. In general, the
existence of noise causes images to get a mottled, grainy,
textured or snowy appearance [5]. So in order to minimize
the noise, we need to adopt a Denoising technique which
leads to a better output for human and/or computer inspec-
tion. Many methods, regardless of specific problem domain,
share the same issue whereby although noise reduction can
improve performance it can also cause information loss, for
example through blurring [6].

Image Denoising algorithms are arguably one of the old-
est image processing functions. In spite of this, many re-
searchers continue to focus their attention on denoising in
order further improve the state-of-the-art [7].

2.1 Standard image processing workflow By de-
fault, before we process an image, it is considered good
practice to filter out any ‘noise’. Until today image noise
suppression remains a challenge in the area of image pro-
cessing, especially when the images are acquired under
poor visibility conditions and therefore noise levels are high
[8]. Typically, the Denoising function estimates the “origi-
nal image” by eliminating noise from a noise-contaminated
version of the image [8], where noise can be caused by
internal and/or external (environmental) conditions. More
importantly for this paper’s main argument, Denoising or
noise-filtering, is typically considered a first (or early) step
in the sequence of preprocessing steps of an image-based
application.

Image Denoising is a common preprocessing step in
many Magnetic Resonance (MR) image processing and
analysis tasks, such as segmentation [9], registration [10]
or parametric image synthesis [11]. Denoising is consid-
ered as one of the core challenges in image preprocessing,
and effective Denoising is often crucial for subsequent com-
ponents to be able to carry out their functions adequately.
According to S. Annadurai and R. Shanmugalakshmi pre-
processing is a process to condition or enhance an image in
order to make it suitable for further processing [12].

2.2 The suggested image processing workflow Ac-
cording to Kenneth R. Spring et.al, the first step in image

processing is to remove brightness fluctuations (due to un-
even background illumination). Then this step should be
followed by removing the noise introduced by the spec-
imen or camera system [13]. A. Buedes et.al stated that
noise reduction is imperative, and it should be done in the
correct way and with the right workflow [14]. According
to the authors [14], by applying the noise reduction with-
out proper evaluation, this will not only eliminate noise, but
will also remove fine details that may be necessary in later
stages in the workflow. This suggests that we should not
always remove noise as a first step in the workflow. More-
over, we should consider the possibility of retaining and en-
hancing different details at different stages, and likewise we
should consider suppressing different aspects of noise, at
different stages, according to the application under consid-
eration. Denoised images may appear good qualitatively
and yet may be considered poor from a more quantitate per-
spective, and especially considering specific applications.
For example, in the fields of medical imaging [15], a minor
distortion (as perceived subjectively) may play a big role
in terms of the scientific enquiry it informs. Medical imag-
ing acquisition technologies produce different types of noise
and artifacts in the images they generate [13], which should
be treated using an appropriate workflow, since in medical
imaging, every detail of information is important. The De-
noising process should not damage any anatomical details
pertinent to the clinical (e.g. diagnostic) aims [13] [16].

In conclusion, the common practice is for Denoising to
be done early, but the literature shows some applications
where details need to be protected in the early stages and
where noise is not always filtered out as the first step in an
image processing sequence. In our experiments (Section
4), we find that Denoising is being done after enhancement
(often even after classification), and this tends to give better
F1 scores on average (more than 91%).

2.3 Denoising functions
2.3.1 Overview This section provides a brief
overview of the main denoising functions adopted in our
experiments.

(a) (b) (c)

Figure 2: shows (a) original noisy image, (b) result of me-
dian de-noising, (c) result of Denoising with the Wiener
Filter.

Figure 2(a) shows an original (raw) ssTEM section of the
Drosophila first instar larva ventral nerve cord, where the
presence of noise is easily perceptible. Figure 2(b) and 2(c)
show the result of applying two different types of filters,
namely the Median and Wiener filters. From preliminary
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Figure 3: Example of Median Filtering using a 3×3 sam-
pling window, keeping border values unchanged.

experiments using small manually tuned chains we found
that the Median and Wiener filters were the two best De-
noising filters consistently giving the highest F1 scores in
comparison to the other three filters (Gaussian, Average and
Laplacian). Because of this clear advantage we have stuck
to both the Median and Wiener filters in our final optimiza-
tion framework, in order to maximize the efficiency of the
experiments. The experimental results using these filters
can be found in the Experiments section, in Table 3.
2.3.2 Median Filtering Image filtering is a process
that involves convolving a kernel (square matrix) with an
image and it is used to reduce noise or artifacts; sharpen
contrast between contiguous regions; highlight contours
with special orientation and detect edges. Median filtering
is a nonlinear method used to remove noise from images. It
is widely used as it is very effective at removing noise while
preserving edges. Median filtering has been established as
a reliable method to remove impulse noise without damag-
ing edge details [19] [20], and it is robust in the presence of
extreme noise. In medical images (relevant to our research
area), edge information plays an important role since we
typically aim to detect cell boundaries.

In order to improve the contrast of the larvae of Peru-
vian Scallop edges, Flores et al [21] applied the Median
filter (with 3 × 3 kernels) to their squared microscopic im-
ages. The median filter was applied 5 times in order to
enhance edge contrast significantly. Embleton et al. [22]
applied the Median filter (with 3x3 pixels) to smooth the
perimeter of regions of interest in binary images of phyto-
plankton with dimensions 768 × 576 pixels. As per Pawan
et.al, for TEM images, Median filter performs better than
Mean and Wiener filter for all Salt and Pepper noise [23].
Many researchers have used the Median Filter to remove
‘Salt and Pepper’ noise across different domains. For exam-
ple; Gajendran and Rodriguez [24] used the median filter to
remove salt-and-pepper noise and also fill in small holes in
digital images of normal female human chromosomes in the
metaphase stage. In order to eliminate noise in microscopy
images of mouse ovarian tissue [25], smoothing was per-
formed using a 4× 4 Median filter. Figure 3 shows a simple
example of median filtering using 3 × 3 sampling window.
2.3.3 Wiener Filtering Wiener filtering is a linear
method used to remove noise from images.

Although Pawan et.al [23] analysis shows that Median
filter is better than Wiener, but as per Garima et.all analysis

of TEM image, shows that performance of Wiener filter,
for Salt and Pepper, Gaussian and Poisson noise is better
than Mean and Median filter [26]. For our experiments, we
used both Median and Wiener filters. Wiener filter was also
found to be useful in image reconstruction [27], and speech
enhancement [28].

In Matlab, it works based on statistical information esti-
mated from local neighborhoods (m x n) around each pixel
in a grayscale image.

[Output, noise] = wiener2(Image, [m n]) (1)

In Matlab’s implementation, estimates of the local mean
and variance around each pixel are first computed:

µ =
1

NM

∑
n1,n2∈η

a(n1, n2) (2)

σ2 =
1

NM

∑
n1,n2∈η

a2(n1, n2) − µ2 (3)

Then a pixel-wise Wiener filter is created using these es-
timates:

b(n1, n2) = µ +
σ2 − v2
σ2 (a(n1, n2) − µ) (4)

where, v2 is the noise variance. If the noise variance is not
given, the filter uses the average of all the local estimated
variances.

2.3.4 The Histogram Representation of Information
Before and After Denoising Histograms are graphical
representations of the values distributions associated with
different types of data. An ”image histogram” acts as a
graphical representation of the tonal distribution of a dig-
ital image. To plot a histogram, one needs to divide the
entire range of values into a series of small intervals and
then count how many image pixels fall into each interval. It
is plotted using 2 axes, where the x-axis typically represents
gray level values and the y-axis represents relative frequen-
cies. Histograms give a rough sense of the density of the
data and a simple visual indication as to whether or not an
image is properly scaled within the available range of gray
levels.

Figure 4 depicts the histogram of a grayscale image be-
fore denoising (Original Image) whereas Fig. 5 depicts the
histogram of the same image after denoising with a Median
filter, and Fig. 6 after denoising with a Wiener filter. The de-
noised histogram patterns are bimodal and skewed, and are
heavier towards the lighter tone. The differences in width
and height, which result from the application of denoising
can easily be perceived. The removal of noise has a notice-
able effect on the width of the histogram (removal of light
pixels in the image). The changes in grayscale frequencies
provide a simple demonstration of the concrete effect of de-
noising on the image histogram.

IIAE Journal, Vol.3, No.1, 2015
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Figure 4: Original Image: histogram before Denoising.

Figure 5: Denoised image: histogram after Denoising (Me-
dian Filter).

Figure 6: Denoised image: histogram after Denoising
(Wiener Filter).

The following section briefly summarizes the software
tools used, our chosen dataset and the algorithmic approach
adopted. This is followed by the results section which in-
cludes an overview of the optimal chains obtained, followed
by a brief conclusion.

3. Methodology
3.1 Image Processing Platform - MatLab and the Im-
age Processing Toolbox Our approach is based on a se-
quence of basic image processing steps, most of which we
adopted from MatLab’s image processing toolbox by Math-
Works. This toolbox is useful for the processing, visualiza-
tion and analysis of images, whilst MatLab is convenient
for rapid prototyping.

3.2 Data The experiments were performed on data
provided by the ISBI 2012 (IEEE International Symposium
on Biomedical Imaging) challenge: “Segmentation of neu-
ronal structures in Electron Microscopy (EM) stacks” [17].
Albert Cardona and team provide public access to 30 slices
of Transmission Electron Microscopy (TEM) images with
corresponding ground-truth images for training, and a sec-
ond set of 30 TEM images for testing [18].

3.3 Image Processing Chain Optimization (IPCO)
3.3.1 Motivation The core aim underlying IPCO
consists of the design and implementation of a simple, com-
putationally efficient and easily adopted method for cellu-
lar membrane detection. Our research is concerned with
the problem of neuronal membrane detection where the

core challenge, as already mentioned, consists of distin-
guishing membranes from organelles. We optimized se-
quences (or chains) of image processing functions using a
global stochastic optimization approach, the overall process
to which we refer as Image Processing Chain Optimization
(IPCO). Our goal is to come up with a system that is compa-
rable to the state-of-the-art (using standard benchmarks and
performance measures), whilst exhibiting added simplicity,
efficiency, user-friendliness and interpretability.

In preliminary experiments (abbreviated to Local Con-
trast Hole Filling algorithm - LCHF) [1], we manually
selected and tuned image-processing sequences, guided
mostly by the subjective impression of which pipelines
struck a good balance between membrane detection and
organelle detection. From these preliminary experiments
we created pools of functions which were important for
later optimization experiments. Although manually-tuned
pipelines can be useful in their own right, especially if they
have theoretical underpinnings, an optimization framework
allows for a both broader and deeper testing of image pro-
cessing chains.

The proposed approach (i.e. IPCO) embodies several ad-
vantages, namely: (1) it attains competitive accuracy lev-
els; (2) it does not involve an excessively long tuning stage;
(3) it does not require specialized hardware; (4) it leads
to chains consisting of short sequences of basic processing
steps which are computationally efficient and easy to inter-
pret; (5) it is simple to use; and (6) it is flexible and can be
applied to many different types of datasets (e.g. ssTEM, ul-
trasound, X-ray, CT images, and even non-medical images
such as natural scenes).

3.3.2 Functions IPCO consists of chains or simple
networks of image processing functions optimized via a
global stochastic optimization algorithm, which combines
elements of genetic algorithms and differential evolution.
IPCO works with a single chain of functions, where some of
the functions may receive input from more than one previ-
ous function.. The optimization algorithm has several basic
image processing functions available to it, which are typi-
cally found in standard image processing libraries such the
MatLab Image Processing Toolbox (by MathWorks).

These functions are classified into different types (e.g.
contrast modulation vs. denoising) and sub-types (e.g. me-
dian vs. Wiener). Types are further classified into 3 broad
categories, i.e.: pre-processing, classification and post-
processing. The two main types of pre-processing func-
tions currently being used consist of denoising and contrast
enhancement. The three main types of classification func-
tions consist of thresholding, hole-filling and watershed.
Post-processing functions include smoothing via combin-
ing functions and morphological operators. Note that the
categorization of function types into pre-processing, classi-
fication and post-processing, is based on their typical usage
and interpretation, and that optimization often finds unex-
pected ways to use functions (e.g. morphological operators
have been found performing classification in some chains).

The functions are configured in different sequences and
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Figure 7: Simplified diagram of an IPCO chain and the com-
putation of an F1 score.

with different parameter settings, in response to changes in
the cost function, defined as the F1 score relative to a subset
of the training images. In the experiments conducted for our
research, chains were allowed to have a maximum number
of eight basic functions, although the total pool of functions
was much larger. In general, functions can appear in any
order and can even repeat several times in a chain. Each
function typically comes along with a small set of parame-
ters which also undergoes optimization (e.g. window size
for the median function). Generally speaking, it doesn’t
take long to optimize a chain for different types of data
(typically less than 500 optimization generations). IPCO
can also be considered fast at pixel classification, where the
task of detecting membranes in Transmission Electron Mi-
croscopy (TEM) images with a resolution of 343× 343 pix-
els can be done in about 10 seconds per image on an average
personal computer (i.e. 1.60 GHz processor and 1.48 GB of
RAM). Moreover, there is no requirement for specialized
hardware.

IPCO runs automatically to reach the target cost of 0 or
a maximum of 10, 000 generations, whichever occurs first.
IPCO can lead to a diverse set of useful chains, many of
which consist of unorthodox sequences and choices of func-
tions. In order to further boost performance, we created en-
sembles from several high-scoring IPCO chains.

3.3.3 Measuring Performance For most experimen-
tal designs involving IPCO, we focus on analyzing the prop-
erties of good quality chains (or ensembles of chains). In
general, we define “good quality” chains as those that ob-
tain F1 scores larger or equal to 90%. For this purpose, we
used publically available training/test data-sets (Droshopila
TEM Images from ISBI2012). In order to more efficiently
test our chains (since the ground truth of the ISBI2012
test images are not public), we have separated some of the
ISBI2012 training set images and labels and used them for
testing/validation purposes.

Figure 7 depicts a simple 3 function IPCO chain where
the second function (i.e. Fy) is a combiner function that
combines the input image with the output of the first func-
tion (i.e. Fx). As mentioned before, the experiments re-
ported in this paper allowed chains to use a maximum of
8 functions, although the experiments tended to find chains
which were shorter. Functions can appear in any order, can
repeat, and typically allow for the tuning of one or more
special-purpose parameters.

Visual inspection is too subjective to be relied on when
evaluating small improvements to the image processing

Table 1: Classification of pixels.

Ground Truth Our Algorithm Conclusion

Membrane Membrane True Positive
Membrane No Membrane False Negative
No Membrane No Membrane True Negative
No Membrane Membrane False Positive

methods. So, we use more standard performance measures
using Precision, Recall and F1. The end result of the IPCO
processing is that image pixels that are classified as “mem-
brane” are labelled as “1” whereas pixels classified as “non-
membrane” are labelled as “0”. The 0-labelled pixels in-
clude various organelles that are eliminated from the image.
Such a binary 0 − 1 image is compared with the binary im-
age of the ground truth to identify pixels that are identified
correctly and incorrectly.

In the computation of F1 scores, output images and cor-
responding ground truth images are scanned pixel by pixel.
Each output pixel is then classified into 4 categories: True
Positive (TP), False Positive (FP), True Negative (TN), and
False Negative (FN) (Refer to Table 1, below). False pos-
itives and false negatives are crucial since they negatively
affect the performance of the algorithm. False negatives are
pixels that are identified as interior (i.e. non-membrane) in
the IPCO output, but are classified as boundary (i.e. mem-
brane) in the ground truth image. False positives are a pixel
that are falsely identified as boundary (i.e. membrane) in
the IPCO output, but is classified as a cell interior pixel (i.e.
non-membrane) in the ground truth. These values are then
used for computing a confusion matrix, which is then used
to compute precision, recall and F1 scores.

As already mentioned, we compute the ‘confusion ma-
trix’ or ‘matching matrix’ for each image and compute the
precision and recall for each image separately.

Precision =
tp

tp + f p
(5)

Recall =
tp

tp + f n
(6)

F1 =
Precision ∗ Recall
Precision + Recall

(7)

F1 is our main accuracy measure. The F1 score can be
interpreted as a weighted average of precision and recall
where an F1 score reaches its best value at 1 and worst
score at 0. For each slice, a confusion matrix was com-
puted followed by corresponding precision, recall and F1
scores. The final performance values were averaged from
the results corresponding to each one of the 30 slices.

4. Experimental Results
4.1 Choice of Filters In Table 2, we compare the ac-
curacies resulting from five different Denoising algorithms
incorporated into optimized image processing chains.

4.2 IPCO Functions IPCO can lead to a diverse set
of useful chains or networks, many of which consist of un-
orthodox sequences and choices of functions.

IIAE Journal, Vol.3, No.1, 2015
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Table 2: F1 scores [0, 1] for different denoising filters used
in small manually-tuned chains.

Measures Median Gaussian Wiener Average Laplacian

Average
F1 0.9163 0.6501 0.8884 0.6503 0.3588

Average
Precision 0.8972 0.6333 0.8309 0.6324 0.2194

Average
Recall 0.9369 0.7092 0.9582 0.7073 0.9925

Table 3: The main classes of IPCO function with their cor-
responding image processing phases and general purposes.

Choices of Processing
Functions

Image
processing
Phase

Functions
General
Purpose

Denoising Pre-processing Cleaning

Contrast Enhancement Pre-processing Enhancing

Thresholding Classification Classifying

Hole Filling Classification Classifying

Watershed Classification Classifying
Combination Function
of MinMax, Average
and Multiply

Classification Hybrid

Morphological
Operators Post-processing Cleaning

Table 3 shows the main classes of IPCO functions with
their corresponding image processing phases.

Figure 8 shows the functions and initial, intermediate and
final processed images of an IPCO chain with an F1 score
of 91.67%. From the Fig. 8, we can see that the Median
Denoising function appears in the middle of the processing
chain (i.e. stage 4).

4.3 Experimental results pertaining to Denoising
In what relative position in a chain does the Denoising func-
tion typically fall? According to the results depicted in Ta-
ble 4, the Denoising function can be found in second place
in 50% of good chains, third place in 20% of chains, fourth
place in 40% of chains, fifth place in 20% of chains, sixth
place in 10% of chain, and in 8th place again in 10% of
chains. Note that in Table 4, our definition of a “good chain”
is one with an F1 score larger than 91%.

Below in Table 4 we depict IPCO processing chains with
an F1 score larger than 91%, averaged over all training im-
ages. These chains are a subset of the chains depicted in
Table 5. We also indicate function types (e.g. Denoising)
and sub-type (e.g. Median). Below the table is a legend
describing the abbreviations used. The table shows that for
chains with an average (Avg) F1 scores larger than 91%,
the optimizer tends to choose the Median function for De-
noising and the Adapthisteq (Local Contrast Enhancement)
function for Contrast Enhancement.

As for Table 5, it shows IPCO chains with an F1 score
larger than 90%, averaged over all training images, with leg-
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Figure 8: Sequence of functions and processed images of a
chain with an F1 score of 91.67%.
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Figure 9: Percentage of chains with Denoising at different
relative chain positions.

ends describing the abbreviations used in the table. In com-
parison with the results in Table 4, the optimizer tends to
choose a larger variety of Denoising functions (e.g. Wiener
and Imfilter (MatLab built in function)). The same ap-
plies to Contrast Enhancement, where the optimizer tends
to also choose Global Contrast functions such as ImAdjust
and Histeq (Histogram Equalization), on top of other Lo-
cal Contrast Enhancement functions such as NBins and Cli-
pLimit. As for Thresholding, it also exhibits a larger variety
of selected functions, including Double Thresholding.

According to Table 5, which depicts 30 IPCO chains with
F1 scores larger than 90%, 43% of chains have Denoising
in second place, 13% in third place, 23% in fourth place,
30% in fifth place, 20% in sixth place, and 6% in eighth
place. Figure 9 depicts a graphical representation of the
information in Table 5 pertaining to the percentage of chains
with Denoising at different relative chain positions.
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Table 4: IPCO processing chains with an F1 score larger than 91%, averaged over all training images

Denoising Place Iteration Count Scores (Avg F1)
Functions and their chain positions

1 2 3 4 5 6 7 8

4th 3414 91.67 CA TS MOO DM W H MOE
4th 200 91.64 CA TS H DM MOO

2nd and 3rd 96 91.43 CA DM DM CMM TS H
2nd, 4th and 8th 7003 91.35 CA DM H DM CMM TS H DM

5th 487 91.27 CA COA TS H DM
6th 200 91.15 CA TS H TS MOO DM MOO

2nd and 4th 2548 91.12 CA DM CMM DM TS H
2nd 200 91.11 CN DM H TS
2nd 70 91.01 CA DM TS TS H

3rd and 5th 324 91.00 CA TS DM H DM COA TS

Legends: CA - Contrast Enhancement Adapthisteq H - Hole Filling COM - Combine Multiply
CN - Contrast Enhancement NBins W - Watershed CMM - Combine MinMax
TS - Thresholding Simple MOE - Morphological Operator Eroding COA - Combine Average
DM - Denoise Median MOO - Morphological Operator Opening

Table 5: IPCO processing chains with an F1 score larger than 90%, averaged over all training images

Denoising Place Scores (Avg F1)
Functions and their chain positions

1 2 3 4 5 6 7 8

2nd, 4th and 8th 91.35 CA DM H DM CMM TS H DM
3rd and 8th 90.98 H CMM DM CA H COA TS DM

5th 90.58 TS MOO W MOE DM CI CI CI
2nd 90.40 CA DM TD CA W TS MOE CMM
6th 90.00 H CH CH TD TD DM COA TS
4th 91.67 CA TS MOO DM W H MOE

3rd and 5th 91.34 CA TS DM H DM COA TS
6th 91.15 CA TS H TS MOO DM MOO

2nd and 6th 90.37 H DM TD CC CMM DW MOO
2nd and 6th 90.15 H DM H CA TS DM TS

6th 90.10 CI TS TS H CI DM H
2nd and 5th 90.02 CA DM H CMM DM H TS
2nd and 3th 91.43 CA DM DM CMM TS H

5th 91.12 CA H H TS DM TS
2nd and 4th 91.12 CA DM CMM DM TS H
4th and 5th 90.51 CH TD TD DM DM H

2nd 90.51 H DM CA COA H TD
5th 90.58 TS MOO W MOE DF CI
6th 90.42 CA TD H CA TD DM
5th 90.29 CA CMM TS H DM H

3rd and 5th 90.24 CA H DM TS DM H
4th 91.64 CA TS H DM MOO
4th 90.30 TD H CC DM TD
2nd 90.29 H DM CA COA TD
5th 91.27 CA COA TS H DM
2nd 91.01 CA DM TS TS H
2nd 91.11 CN DF H TS
2nd 91.09 CN DW H TD
4th 90.01 CC H TD DM
2nd 90.00 CA DW H TD

Legends: CA - Contrast Enhancement Adapthisteq COM - Combine Multiply H - Hole Filling
CN - Contrast Enhancement NBins COA - Combine Average W - Watershed
CC - Contrast Enhancement ClipLimit CI - Contrast ImAdjust DM - Denoise Median
MOO - Morphological Operator Opening CH - Contrast Histeq DW - Denoise Wiener
MOE - Morphological Operator Eroding TD - Thresholding Double DF - Denoise ImFilter
CMM - Combine MinMax TS - Thresholding Simple
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