
XDSM - an X11 based Virtual Distributed Shared Memory System.

A.D.S.Argile, A. Bargiela.

Department of Computing,
The Nottingham Trent University,
 Burton St., Nottingham NG1 4BU, U.K,
arg@uk.ac.ntu.doc, andre@uk.ac.ntu.doc

Summary
An X11 based page-able shared memory system, permitting the implementation of a distributed water
network monitoring and control software suite, is described in this paper. The system is based on the
use of modular library and language specific interfaces, to access the underlying X11 communications
platform supporting distributed shared memory (DSM). The system uses a server client relationship,
with local computer node task managers, and uses the DSM for communication, configuration and
coordination. An X11 based distributed mutual exclusion algorithm, based on the unconventional use
of Lamport’s bakery algorithm, is illustrated.

Keywords
X11, Distributed Shared Memory, XDSM, Bulk-synchronous parallel processing.

1. Introduction
When parallel tasks execute on a single processing node their data communication requirements can
be provided by means of shared memory. This is because the shared memory paradigm gives the
programmer a shared address space linking separate processes. It provides a logical view of data
which abstracts out the coding requirements from the actual complexities of the physical data transfer.

Conversely, the conventional method of intertask communication via message passing, forces the
programmer to be acutely aware of message source, destination, transmission protocol(s), and format.
Thus message passing based communication can become quite complex in dynamically evolving
software systems. This is especially true if there is no software layer translating the logical
communication requests into physical hardware specific commands [9]. The rationale for shared
memory has been stated explicitly by [12]:

“The shared memory system hides the remote communication mechanism from the processes
and allows complex structures to be passed by reference, simplifying distributed application
programming. Moreover, data in a distributed shared memory can persist beyond the lifetime
of any single transient process.”

“The message passing models force programmers to be conscious of data movement between
processes at all times, since processes must explicitly use communication primitives and
channels or ports. Also since data in the data-passing model is passed between multiple
address spaces, it is difficult to pass complex data structures.”

However, while the shared memory model of intertask communication simplifies program design, it

is limited by the power of the (single) host CPU. Increasing the available processing power means
either using more than one CPU, or upgrading the host processor.

Using more than one CPU can give greater computation throughput by the exploitation of parallelism.
However, closely coupled multi-CPU systems suffer from problems of scalability related to the
complexity of the communication hardware required by CPU to CPU, or other hard wired connection
topologies. Thus more general communication strategies based on networking software are desirable.
The complexity of such distributed computing systems stems from the potential heterogeneity of
CPU’s, and heterogeneity of network communication protocols.

Distributed shared memory (DSM) is a concept of shared memory applied to loosely coupled
systems, where true shared memory cannot be supported [10]. It attempts to combine the
programming advantages of using shared memory for intertask operations, with the advantages
offered by having tasks able to run on specialized hosts. Put more pragmatically [14]:

“Heterogeneous distributed shared memory (HDSM) is useful for distributed and parallel
applications to exploit resources available on multiple types of hosts at the same time”.

However, inherent problems associated with loosely coupled systems - architectural and
communication heterogeneity, and complex considerations of data consistency [5][6][7], have been
responsible for the lack of widely accepted implementations of distributed shared memory systems.

This paper presents a candidate implementation of distributed shared memory (DSM), which is
designed for a network of heterogeneous computing nodes. The system described here was developed
having in mind a particular class of industrial process control applications requiring extensive
computational power, but involving only moderate interprocess communication. In particular, it has
been used to implement a large software suite for real time water network monitoring and control, as
explained in section 5.

The proposed DSM system is based on the use of the X11 Windows graphics standard. This offers the
advantage of both portability and an integrated graphics environment for the development of graphics
user interfaces.

2. X11 basics
X11 Windows is a network transparent, vendor independent graphics oriented operating environment
[8]. It consists of two parts: an I/O server which controls the graphics hardware (display screen,
keyboard and graphics pointing devices), and client application programs which require access to the
visual display and pointer device, and/or keyboard. Clients use the display and other devices by
sending message requests to the server and, when necessary, they receive replies back from it. The
server also provides system and display information to clients, thus acting as a database.

This client/server relationship, which is based on an underlying message passing system, corresponds
to the central server algorithm [12]. This is where global data is held by a central database task. This
task, the server, controls client access to the global data by supplying data on request to clients, and it
updates the global data when sent new data by clients. Thus global data and client data may be
structured in totally different ways. Furthermore, in the algorithm, global data does not migrate to
other servers.

Figure 1 illustrates the concept of the X11 client server arrangement. An X11 server provides high
level access to display and keyboard, and globally available client and system data. Clients access the
I/O devices and data by sending requests to the server via a suitable network communication protocol.
Clients that are local to the X11 server normally use a local communications protocol.

Access to the display and keyboard, together with the organization of the display, is provided by the
windows structure. Clients are notified of any change to the windows by the server generating
appropriate events. It is the responsibility of the client to monitor the event queue and to act
accordingly. The communication of data between clients and a server is effected by means of
properties, which are data structures associated with corresponding windows. The following gives a
summary of the key concepts underlying the X11 Windows system:

• Windows
Windows are normally rectangular regions of the screen serving as output for client graphics
and input from the keyboard. Windows are selected using a graphics pointer device, and they
provide applications (clients) with a method of organizing the display screen. Each display
screen consists of a single root window covering the entire screen. This serves as parent for
overlying child windows. These child windows may also have child windows, and be overlying
or underlying other windows. When a client connects (registers) with a server, it is assigned its
own ’private’ window within the server’s display. The client may then create more child
windows. This relationship between parent and child window creates a hierarchy of windows.

• Events
X11 clients frequently need to be aware of what is happening to any windows created for them,
or about other windows they may have an interest in. Clients have two ways of obtaining
information about the window environment. For immediate needs they can explicitly request
specific window information from the server. For continual change notification they instruct the
server to asynchronously send status change information. This status information is contained

Remote Client

4

X11 Server

Figure 1. X11 client server arrangement

Local ClientsRemote Client

Keyboard

VDU (display)

1 2 3

Mouse

 Window of
 client 1

 Window of
 client 3

 Window of
 client 2

in event data structures, which are queued on an input event queue.

Various window event structures exist to provide status information about window size and
stacking changes, window property changes, pointer position and motion, client messages, etc.
In addition, timer and I/O event facilities are defined by the standard X11 toolkit. X11 clients
are in effect event driven, because they are expected to continually monitor incoming window
and I/O events, and then react to them.

• Properties
Properties are data structures maintained by the X11 server and referenced by display and
window id. If the window is destroyed the data will be destroyed by the server. The properties
are structured as 1, 2, or 4 byte arrays permitting the storage of text strings and integers (which
can be mapped to ASCII floating point values). Properties are referenced by host display,
window, and property id. Thus a property stored in any window may be accessed by any client
connected to the window’s server. So properties represent globally sharable data.

Properties can be owned exclusively by a client task; this can provide the basis for an access
locking protocol. A client wishing to gain privileged access to the property determines if the
property is unowned, and then sets the ownership of the property to the window of its choice.

The client-server communication in X11 is based on a message passing system which is accessed via
a Remote Procedure Call (RPC) interface. This means that the underlying detail of physical message
routing is hidden from the user [4][10]. The mechanism used to communicate graphics function
requests between client applications and the graphics server can be adapted to communicate
appropriately structured, shareable properties. It is this mechanism which is utilized to support the
facility of the distributed shared memory.

3. X11 based Distributed Shared Memory (XDSM)
A fundamental development for the distributed shared memory system is the definition of shared data
areas and their mapping onto the physical memory resources. In our system, the local memory of the
client is treated as addressed data blocks to be stored in global, shared X11 properties. This principal
characteristic of our system is reflected in its name: the X11-based Distributed Shared Memory
system - XDSM.

XDSM is constructed on the basis of library modules. Various modules exist for creating GUI
interfaces, user language code interfacing, and GUI message generation. Figure 2 illustrates the
logical information flows between the X11 server and main XDSM modules. At the center of an X11
client there is an endless loop checking the input event queue for incoming information. Events are
extracted and processed by XDSM library code on the basis of whether they may be intended for the
X11 GUI toolkit, or are control area property change events required by the control module. Reception
of relevant property change events causes the configuration and control module to instruct the data
access module to copy XDSM control data to a local copy of the control area.

• Shared data access module.
The most important module for the XDSM user is the module dealing with shared data access. This
operates the various XDSM access protocols needed when reading and writing shared data, and
transfers data directly between local memory, accessible to application code, and the XDSM
maintained by the X11 server.

Figure 2. X11 and XDSM event processing

Event
Processing

X11 transport level

Application level

Toolkit and Xlib library level

Local memory access

toolkit events

GUI queries
and changes

Information
requests and
replies

Local Memory

Control Memory

Read, write
requests

Data changesData changes

Data changes

X11 GUI
Toolkit

X11 Server

User
code

Shared
Data
Access

Control
and
Config.

Control events

Information
requests and
replies

Read, write
requests

Global Shared Memory in
XDSM server window

XDSM
memory
access

X11 event queue

XDSM library level

By using a property access locking protocol (explained on in section 4), X11 is used to supply all
required memory access operations - lock, free, read shared area(s) to local memory(s), and save
local area(s) to shared area(s) - in both access blocking and non-blocking forms.

• Event processing module.
The event processing module reads the queue of events sent by the server, and directs appropriate
events to the X11 toolkit and to the XDSM control module. The X11 server, user code and the
XDSM library tasks, execute in a pseudo-parallel manner. The event processing module
implements in effect the scheduling of these tasks.

While the event processing loop is an integral part of any X11 application, for the purpose of the
distributed shared memory system it is seen as an implementation detail. For this reason, the event
processing module is embedded within the XDSM system and is transparent to the distributed
applications.

• Control and configuration module.
The control and configuration module is responsible for maintaining the integrity of the distributed
processing system. The module maintains a control data area which contains task pathnames, status
and command information. The maintenance of the control data in XDSM systems is linked to X11
event processing and is hidden from the application programmer.

To prevent unnecessary re-reading of the control data, the XDSM system uses the facility by which
X11 is instructed to inform an application of any modification to window properties. Changes to
the control area are reported in the input event queue, and extracted from it by the control module.
This passive approach to monitoring data consistency avoids the round trip delays incurred when
requesting information from the X11 server - the message passing involved in a
client→server→client information request requires a minimum delay of 2 task re-schedulings.

Regarding notification of property changes, there is evidence that occasionally events do not arrive,
or can be seriously delayed. Therefore, using this passive communication protocol to support more
complex XDSM page operations, corresponding to read, write, and delete faults, and dynamic data
merging to give continual local/remote XDSM data consistency, is problematic. Implementing
continual consistency checking and updating by data merging (see section 4 on Paging) would
involve direct event processing by the data access module.

4. XDSM Implementation Issues

• XDSM configuration and start-up.
To provide for XDSM start-up and global control, an XDSM supervisor task was created. This
provides a convenient window for XDSM data, and can be used to monitor the ownership status of
each data area, periodically save the XDSM to disk, and provide various start-up and control options.
However, its most important function is to start-up the XDSM system. To do this it reads a local
configuration file which provides:

• A unique XDSM identifying name for the task suite to use.
• XDSM host names, and the operating system in use.
• The names of the local hosts together with the names of the local host task managers, and

which tasks are to run.

The supervisor (XDSM server) remotely executes each local host manager (this is operating system
dependent, and may have to be done manually). The XDSM display and identifying name are supplied
as command line parameters. After locating the XDSM control area and obtaining the client
pathnames from it, the clients are activated on their associated hosts. The clients then put their status
information in the control area. Should a client fail, the loss of its window can be detected by the
manager so that it can be re-executed.

• Control area facilities.
To deal with task control and XDSM configuration, an XDSM control module and memory area has
been provided (shown in figure 2). This contains lists of hosts, pathnames, status and command data
for managers and clients. The command information relates to general commands issued at user
instigation by the supervisor - start, stop, exit. The status information relates to a client’s executing
task status. By default, clients are marked as absent. When the client task is initiated it is marked as
loading, rather than running. This is because task execution may fail, but the initiating manger will
not be informed by the operating system. Also, there is an undeterminable delay before the client can
locate and update the XDSM control area. Therefore, between the absent and the executing state of a
task, there exists an intermediate state of loading. Once a client has connected with the XDSM, it
marks itself as either running or waiting, as appropriate.

• Mutual exclusion during XDSM data access.
When requiring sole access to shared data, a client must determine if the property is unowned. When
it is, it must set ownership of the property to its own window in the display where the required XDSM
data is located. However, because X11 is asynchronous, with variable, buffered message delays, it is
possible for applications in contention over data ownership to incorrectly gain multiple ownership.

An attempt to provide mutual exclusion by implementing a server grabbing protocol, which involves
a client gaining exclusive access to the X11 server, is also deemed to be unsatisfactory as it can lead
to the starvation of individual clients. The current version of XDSM implements a separate mutual
exclusion protocol which is based on the use of a standard non-distributed mutual-exclusion
algorithm. The property based protocol is a variant of Lamport’s Bakery Algorithm [2] [11]. It uses
property data to provide an abstraction of flat memory data structures (queue position numbers). The
protocol causes the client at the head of the queue to wait in the queue until the data is free. It is
implemented by the following stages:

1. Assign queuing number (highest existing number+1) and enter the queue.
2. Wait until there are no smaller numbers in the queue.
3. Wait until data is free.
4. Lock data.
5. Delete queuing number - exit queue.

The queuing system inherent in the Lamport Algorithm resolves this potential liveness problem for
the client tasks. This is because after a process enters the queue, it will eventually move to the head
of the queue, whereupon it can gain exclusive access to shared memory data.

• XDSM consistency and access efficiency.
Properties are also used to provide memory consistency checking. Each data property is associated
with the ’last accessed’ property. Each process that accesses the data sets the property ownership to
its window. Whenever the area is to be read, this is checked to see if the data in it has been modified
by another application. By making it unnecessary to re-read unchanged data, the XDSM system
increases the efficiency of the shared data access.

• Data paging.
Because of restrictions in the way X11 properties can be used, modifying one item of shared data
requires that all the data be rewritten. This implies that if the size of the properties are big, there is a
large communication overhead associated with the update. XDSM overcomes the problem by
automatically segmenting the data into smaller ’pages’. Storing data as pages has the advantage of
reducing the amount of data to be read in and out, and by using the ’last accessed’ property mentioned
above, unnecessary reading can be avoided entirely. If the task holds a shadow copy of the data
originally read from the XDSM, this can be compared with local memory data, and only modified
pages saved back to shared memory. Merging data changes made both in local memory and XDSM,
followed by updating the XDSM, is also possible.

5. Application
Using the XDSM, the following functionality can be provided for an application suite:

1. Definition of shared data areas - with user monitoring and control of the shared data provided
by an interactive GUI graphics user interface.

2. Shared or exclusive access to global data.

3. Task coordination and control, including automatic task start-up and local task control.

4. Distributed error handling and recovery - achieved by maintaining shadow copies of the shared
data, and by error handlers.

XDSM has been used to facilitate the distributed implementation of a realistic decision support system
for the monitoring and control of water distribution networks. The structure of the application
software suite is shown in figure 3. The suite comprises network and telemetry simulators, state
estimators and an operator interface, configured to provide a classical feedback control loop. Other
modules, which are scheduled for future incorporation into the suite, are concerned with optimal
control and telemetry confidence limit analysis.

The original application suite was implemented as a set of concurrent tasks communicating by
conventional shared memory. The parallel program implementation of this system is a natural
extension of the original single processor multitasking implementation [3] [1]. XDSM's main addition
to this system, though not involving any change to the original subsystem concept, is the XDSM
supervisor task, together with local host task managers.

Using a network of 4 Sun SC Sparcstations running the simulation, telemetry, estimation, and operator
interface modules respectively, the cycle time achieved for a 65 node network was approximately 10
secs. This is at least an order of magnitude better than would be expected in real life. Projecting the
results for larger networks, it is expected that the communications overhead will, at worst, increase
linearly with network size, so the communication to computation time ratio will actually decrease.

Telemetered
Data

OBSERVABILITY
 TEST

Monitored
Data

Controls

SIMULATION

MONITORING

CONTROL

Exact
Data

NETWORK
SIMULATION

TELEMETRY
SIMULATION

ESTIMATION

GRAPHICAL
DISPLAY

BAD DATA
PROCESSING

OPERATOR’S
INTERFACE

 VALVE
CONTROL

Figure 3. Water network monitoring suite

6. Conclusions
Our work to date has resulted in the development of an original software product, an X11 based
Distributed Shared Memory (XDSM) system, intended for applications in scalable heterogeneous
distributed computing environments.

The XDSM system has been successfully used to provide an implementation framework for a
telemetry system concerned with the monitoring and control of water distribution networks. The
performance of the current implementation of the XDSM indicates its applicability to such a class of
industrial process control applications.

As major performance differences relating to various mutual exclusion algorithms have been noted,
the next stage of our research will be concerned with performance evaluation. This will be done in
conjunction with the development of an orthogonal programming meta-language harness in-order to
support the implementation of the Bulk Synchronous Parallel (BSP) model of parallel processing
[13].

7. References
[1] Argile.A. & Bargiela.A., Using X11 windows to provide shared task-memory in distributed

systems, in Integrated Computer Applications in Water Supply, Volume 1, Coulbeck.B.(ed.),
Research Studies Press, 1993.

[2] Ben-Ari.M., Principles of Concurrent and Distributed Programming, Prentice Hall, 1990.
[3] Bargiela.A. & Al-Dabass.D., A Simulated real-time environment for verification of advanced

water network control algorithms, Systems Science 14.3. 1988.
[4] Coulouris.G.F. & Dollimore.J., Distributed Systems, Concepts and Design, Addison-Wesley,

1988.
[5] Heddaya.A., & Sinha.H,

An implementation of MERMERA: A Shared Memory System that Mixes Coherence with
Non-Coherence, BU-CS-92-013, 1992.

[6] Heddaya.A., & Sinha.H,
An overview of MERMERA: A System and Formalism for Non-coherent Distributed Parallel
memory, BU-CS-92-009, 1993. To be published in Proc. 26th Hawaii Int. Conf. Sys. Sci.

[7] Hutto.P.W. & Ahmand.M., Slow Memory: Weakening Consistency to Enhance Concurrency
in Distributed Shared Memories, IEEE 10th Int. Conf. Dist. Systems, 1990, 302-307.

[8] Jones.O., Introduction To The X Window System, Prentice Hall, 1989.
[9] Kranz.D., Johnson.K., Agarwal.A., Kubiatowicz.J., Beng-Hong.L., Integrating Message

Passing and Shared Memory: Early Experience, SIGPLAN Notices, 1993 28(7), 54-63.
[10] Levelt.W.G, Kaashoek.F., Bal.H.E., Tanenbaum.A.S., A Comparison of Two Paradigms for

Distributed Shared Memory, Software-Practice and Experience, 1992, 22(11), 985-1010.
[11] Raynal.M., Algorithms for Mutual Exclusion, North Oxford Academic, 1986.
[12] Stumm.M. & Zhou.S., Algorithms Implementing Distributed Shared Memory, COMPUTER,

23, 5, 1990.
[13] Valiant.L.G., A Bridging Model for Parallel Computation, Comm.ACM, 1990,33.8, 103-111.
[14] Zhou.S, Stumm.M. & Wortman.D., Heterogeneous Shared Memory, IEEE Trans. on Parallel

and Distributed Systems, Vol. 3, 5, 1992.

	d13-1.pdf
	d13-2
	d13-3
	d13-4
	d13-5
	d13-6
	d13-7
	d13-8
	d13-9
	d13-10

