
TRAFFIC TELEMATICS SOFTWARE ENVIRONMENT
E. Peytchev, A. Bargiela.

Real Time Telemetry Systems - Simulation and Modelling Group, Department of Computing
The Nottingham Trent University, Burton Street, Nottingham, NG1 4BU, UK

e-mail: epe@doc.ntu.ac.uk, andre@doc.ntu.ac.uk

KEYWORDS

Control Systems, Urban Affairs, Transportation,
Telecommunications, Distributed Processors.

ABSTRACT

This paper describes the design and implementation
of a distributed computers software environment for
urban traffic monitoring and control. It effortlessly
accommodates diverse software modules and systems
(such as real-time traffic control system SCOOT,
macrosimulation prediction module PADSIM,
microsimulation module HUTSIM, turning
movement coefficients estimation module, mobile
traffic information system etc.) without adversely
affecting their performance and exemplifies the
natural way for building hierarchical control systems
in distributed computers environment. A control
system built on the basis of such environment benefits
from the use of data structures, specifically designed
for real-time traffic monitoring and control (Argile et
al. 1996). Easy to use communication interface
provides simple and reliable delivery of the traffic
data to all the nodes and modules in the system. The
implementation of the communication software
covers a variety of platforms such as DOS, Windows,
UNIX and EPOC (operating system for palm-top
computers PSION).

INTRODUCTION

The nature of traffic control systems is such that
they need to operate in real-time (e.g. concurrently
with the occurrence of the traffic). This requirement
demands high performance computer systems.
However the price of high-performance shared
memory multiprocessor machines makes them, in
general, uneconomical for traffic control applications
so the hierarchical and distributed system architecture
is the most natural solution for building a system for
traffic management and control. It has been
demonstrated, from applications in other fields, that
hierarchically distributed systems have improved
management and can collect and use large amounts of
data (Kaysi 1992), (Moshe Ben-Akiva 1994),
together with improved reliability and fault tolerance.
The hierarchical distribution of information and
control implies system modularity, which helps the
implementation and the geographical growth of the

system, and supports the introduction of new
technologies and the evolution of existing ones.
Therefore, the most promising approach to building a
traffic control and management systems, satisfying
the requirements listed above, is to use distributed
computing resources.

The distributed computers shared memory
environment DIME (which stands for a DIstributed
Memory Environment), referred to in this paper as a
communication environment on the basis of which
the traffic control and management systems are built,
was first introduced by (Argile et al. 1996). It has
subsequently developed to provide a reliable and easy
to use processing environment for the execution of
software modules for urban traffic control systems.

URBAN TRAFFIC MONITORING AND
CONTROL - PRINCIPAL STRUCTURE OF
THE HIERARCHICAL CONTROL SYSTEM

Typical structure of a hierarchical traffic control

system is shown on Figure 1. At the highest level of
the hierarchy (District Node), the monitoring and the
management of traffic flow is performed throughout a
wide area, i.e. in the boundaries of a city, or in the
case of a motorway control throughout the length of
the controlled route. Directives containing new route
or flow control instructions are obtained from
prediction and control algorithms which use real-time
traffic data, incident information and current control
settings at the lower levels of the hierarchy.

The next level in the hierarchy is the regional node.
This level coordinates traffic signals (i.e. this is the
existing real-time traffic control system SCOOT
level), provides freeway congestion advice and
coordinates the control of local freeway segments.
The primary tasks at a regional node include: using
traffic flow counts to obtain a collection of traffic
flow data from a defined set of local nodes; predicting
and acting according to a set of regional origin and
destination data; coordinating traffic signals for
optimisation of the traffic flow control within and
between the local nodes; detecting accidents within
the geographical boundaries defined by the set of
local nodes under control.

The lowest level of the hierarchy is the local node.
Typical configuration of such a node consists of the
traffic sensors (inductive loops) and a linked set of
local processors controlling traffic signal changes (no
optimisation at this level). It collects detailed traffic

flow measurements from a distributed set of sensors
or from a local sensors group which measure key
traffic variables in real-time (e.g. occupancy data for
each link in the traffic network).

While representing the global view for the traffic
control system, the generic traffic management node
structure and the hierarchical structure of an advanced
traffic management system take into account several
important considerations for the development of the
modern traffic control systems:

(a) The control on a regional level together with
the control for the clusters of local nodes is usually
encapsulated into a Demand Responsive Signal
Settings Real-Time Control System (such as SCOOT)
and is already implemented for many urban traffic
networks all around the world.

(b) There are only a limited number of
interventions available which a district node could use
(district node according to Figure 1.). They usually are
strategic interventions, concerning a subset of regional
nodes (or all of them), rather than interventions
concerning the control for a specific local node. These
interventions are defined on the highest level only and
their distinctive characteristics are as follows: they are
real-time control system specific and reflect the way it
controls all timing plans in the traffic network; the
strategic interventions work on a different time scale
in comparison with the control sequences used for
operational control (e.g. traffic lights settings).
Typically, an intervention, which has a lifecycle equal
to the time needed for a vehicle to cross the traffic
network (usually between 15 and 30 min.), is a
strategic intervention for the system. In comparison
the operational control interventions have lifecycles
equal to the cycle of the traffic lights in the system
(approximately 90 sec).

(c) The traffic signal control system uses a local
area communication network or indeed shared
memory computer configuration, specifically

designed to meet the requirements of the time-critical
data transfer between the signal settings control
system modules. By contrast, the highest level of the
control system configuration is built around a general
LAN/WAN network.

(d) There is a wide variety of modules running
in parallel on the district node level and a LAN-based
distributed environment is a natural solution of the
problem of providing the computational power
required. A less obvious solution is to use the Internet
Network (Wide Area Network (WAN)) as a network
basis for the implementation of the traffic
management system. As indicated by (Lum at al.
1983) and (Peytchev E. 1998), such a choice does not
have a negative influence on the inter-modules data
exchange. Data transfer speed of the interface across
the network is enough to deliver, on time, the data
required. In the same time, this environment allows
new applications to be fully integrated within an
existing system without adversely affecting its
performance. This approach potentially allows the use
of the computational power of the control system to its
full extent, executing new tasks on the machines with
minimal workload.

The analysis of the results, obtained by installing
different generations of traffic light control systems
on the field, showed that the best (responsive) control
is obtained when the control strategy is free to evolve
in line with the detected demand (demand responsive
control systems). This conclusion shows the relative
independence of the region level of the hierarchy

shown on Figure 1. However, it is clear that even
better results can be achieved, if reliable prediction on
a large scale is present. Since all cycle to cycle
modelling and queue formation anticipation is done
on region node level, the prediction on a larger scale
can be performed on district node level only and it
would concern the traffic network in general terms
(strategic traffic control) and usually the process is

Regional Node

Supervisory Control Level

Regional Node

District Node

Cluster of local Nodes Cluster of local Nodes
Figure 1. Hierarchical structure of an Advanced Traffic Management and

Control System

SCOOT

level

SCOOT

level

NETWORK

Turning Movements
Estimation and Prediction

Module

Surveillance
Module

Communication Module. Provides all
communication links and data exchange

between the modules

Figure 2. : Supervisory Layer of control - functional structure.

Queue
Prediction

Module
Control Strategy

Generation Module

Operational Control
Generation Module

(SCOOT)

referred to as supervisory control and the district node
level is referred to as supervisory layer of control.

URBAN TRAFFIC MONITORING AND
CONTROL - FUNCTIONAL STRUCTURE OF
THE SUPERVISORY LAYER OF THE
CONTROL SYSTEM

In terms of modularity, the supervisory layer of the
traffic monitoring and control system consists of the
following modules: Surveillance Module, Turning
Movements Estimation and Prediction Module;
Queue Prediction Module; Control Strategy
Generation Module; Operational Control Generation
Module and Communication Module (Peytchev E.
1998). The overall structure of the supervisory layer

of control is shown on Figure 2.
The Surveillance Module (in an ideal system)

communicates with all possible programs and devices
capable of providing traffic flow information. Such
programmes and devices may include traffic flow
counts, in-vehicle devices, video-cameras etc.

The Turning Movement Coefficients Estimation
and Prediction Module (in some systems it is replaced
with OD-matrix estimation module) supplies essential
information regarding the split of the traffic flow for
every cross-road in the controlled traffic network.
This information is later used by the Queue Prediction
Module to simulate the traffic network in faster than
the real-time mode and to determine the parameters of
a future state of the system. These results are fed into
the Control Strategy Generation Module, which
generates supervisory commands (interventions),
aimed at improving the overall state of the traffic. The
commands are generated on the basis of the collected
and predicted data in the system and are subsequently
interpreted and applied on the road by the Operational
Control Module (typically a system similar to
SCOOT).

All interprocess communications and data
exchanges are delegated to the Communication

Module.

DESIGN AND IMPLEMENTATION OF THE
COMMUNICATION MODULE FOR
SUPERVISORY LAYER OF CONTROL

There are two alternatives for implementing the
communication module: using message-passing
approach and using distributed shared memory
system.

The primary advantage of distributed computers
shared memory systems over data-passing systems is
the simpler abstraction provided to the application
programmer, an abstraction the programmer already
understands well. The access protocol used is
consistent with the way sequential applications access
data, allowing for a more natural transition from
sequential to distributed computations. In principle,
parallel and distributed computations written for a
distributed shared memory system can be executed on
a shared memory multiprocessor without the need for
change. The shared memory system hides the remote
communication mechanism from processes and
allows complex structures to be passed by reference,
substantially simplifying the programming of
distributed applications. Moreover, data in distributed
shared memory can persist beyond the lifetime of a
process accessing the shared memory.

In contrast, the message passing models force
programmers to be conscious of data movement
between the processes at all times, since processes
must explicitly use communication primitives and
channels or ports. Also, since data in the data-passing
model is passed between multiple address spaces, it is
difficult to pass complex data structures. Data
structures passed between processes must be packed
before transmission and unpacked after reception by
the application. For this reason, the code written for
distributed shared memory is usually significantly
shorter and easier to understand than equivalent
programs that use data passing.

Read/
Write

Memory
Manager

Local Data
Storage

DIME

Network

Shared Memory
Manager interface

Socket
communication

........

D
IM

E
 L

ib
ra

ry

User Application code N

DIME API

Socket
communication

interface

D
IM

E
 L

ib
ra

ry

User Application code 1

DIME API

Socket
communication

interface

D
IM

E
 L

ib
ra

ry

Figure 3. : DIME Configuration.

Integrating all the modules in the supervisory layer
of control into one working system is a difficult task,
therefore the simplicity of the communication is of
paramount importance. The best choice in this case is
to use distributed computers shared memory system
and the DIME system introduced by (Argile 1996) is
an ideal tool to perform this task.

DIME CONFIGURATION

DIME’s configuration is represented on Figure 3.
Each user application code has an additional

component linked to it, which provides the
communication interface via DIME API with the
shared memory system. The requests for reading/
writing data from/to the shared memory (creating or
removing areas) are transferred by the DIME library
over the network to the memory manager task, where
they are being processed and replies are sent back.
There are two components of DIME: a) the shared
memory manager (SMM) task which owns the shared
area and b) the communication DIME libraries which
are linked to user applications and the memory
manager in order to interface to the network.

The shared memory manager (SMM) component of
DIME operates on a closed-loop basis, continually
checking for the requests to access or to maintain the
shared memory data structures. These requests are
typically raised by the application programs
executing appropriate API routines, but a provision
has also been made for a keyboard entry of requests
to the memory manager.

The DIME’s API provides facilities for the creation
and removal of shared memory structures and the
read/write access to them. The synchronization of
accesses to shared memory is implicit in the operation
of the memory manager task thus it does not require

the provision of separate library functions.
In supporting the traffic simulation, monitoring and

control applications, DIME software implements two
types of memory structures, an array of records and a
circular buffer. These two structures are intended for
use with static and dynamic data respectively.

(a) Shared Memory Structure “Array”.
This type of structure represents the static type of

data in the system and the most common description
for its internal representation is an array of records.
Typically, the array of records will store traffic
network description data, that is shared between
several concurrent applications and is read and
updated infrequently (for example route descriptions
and route travel times). Because of that, it is possible
to afford a simple model for accessing the shared
array, whereby always a complete array is read or
written-to.

(b) Shared Memory Structure “Circular Buffer”.
For the time-varying data, such as the traffic flow

measurements or the results produced by the real-time
simulation and control software modules, the access
to the supporting memory structures is requested by
applications on a second-by-second basis, so the
efficiency of access to the shared memory is of
utmost priority. The circular buffer data structure
provides an efficient access to an individual record
and it readily keeps track of the time sequence of
messages. The buffer maintains a global insertion
pointer and an individual extraction pointer for each
of the “readers”, thus enabling applications to recover
from sporadic communication delays that are
inevitable in a distributed processing environment.

EVALUATION

Following the design of the traffic telematics

environment presented earlier, a prototype of the
supervisory layer in the traffic control system has
been created. The prototype integrates a client,
delivering messages from the SCOOT real-time
traffic control system, predictive simulation model
PADSIM (includes turning movement coefficients
estimation and prediction module), microsimulation
model HUTSIM and one end-client on the road,
connected to the system via mobile telephone link and
running on a PSION palm-top computer. The

structure of the system is shown on Figure 4.
In the presented configuration, the SCOOT traffic

control system delivers two dynamic flow data (so
called M14 and M19 messages) and the SCOOT
client makes them available by writing the
information into the DIME memory manager every
second. These data are read by PADSIM, which
estimates and predicts the traffic turning movement
coefficients and makes a prediction for the state of the
traffic network for up to 20 minutes ahead.
Subsequently, PADSIM makes the obtained results
available for the other modules in the system through
DIME. It also calculates route travel times and fills in
the appropriate structures in the DIME memory
manager. Some of the data (traffic turning movement
coefficients) are used by the HUTSIM for
microsimulation and verification. The on-the-road
client connects to the system and reads the route
travel times data on request from the user and
displays the obtained data on a small user-friendly
graphical display.

The amount of data, currently available on-line for
the Mansfield region, is delivered at a rate of 3000
bytes/second and this is well below the data exchange
rate provided by the DIME system, which is around
35 kB/sec for a single client and in the range of 15-30
kB/sec for 2 - 5 clients (depending on the workload of
the network).

Figure 4. Supervisory Layer of Control -
prototype structure.

DIME

SCOOT
Client

SCOOT

Macrosimulation (PADSIM)
Travel Time and Queue Length Prediction

and Traffic Turning Movement Coefficients
Estimation and Prediction

Microsimulation
(HUTSIM)

On-the-road client
(PSION with mobile
phone connection)

radio-link

CONCLUSIONS
This paper concentrates on the design and

development of a new generation traffic telematics
schemes. It recognises two principal levels of traffic
control schemes: Supervisory Layer of Control
(Predictive Control), in which actions are being taken
according to results obtained by predictive simulation
and Operational Control (Demand Responsive
Control), in which decisions are being made
according to the current measurements (demand).
Various researchers (including the authors of this
paper) have shown the potential of the distributed
processors environment for building traffic control
systems. This paper reports the implementation of a
prototype of a Supervisory layer of control in such a
traffic control system. The implementation, described
in this paper, uses the distributed shared memory
system DIME as a backbone for interprocess
communication between the modules of the system. It
has been shown, that the throughput of the
communication subsystem is enough to deliver the
necessary traffic data on-line. This choice enables
also easy mobile phone access to the system and the
fact has been illustrated by displaying the on-line
traffic data on the screen of a hand-held computer
PSION.

The DIME system is currently available for DOS,
Windows95/NT, UNIX, EPOC operating systems.

REFRENCES:

Argile A., Peytchev E., Bargiela A., Kossonen I.
“Dime: A Shared Memory Environment For
Distributed Simulation, Monitoring And Control Of
Urban Traffic”, 8th European Simulation Symposium,
Genoa, Italy, 1996, ISBN 1-565555-099-4, Vol.1, pp.
152-156.
Kaysi I., “Framework and models for the provision or
real-time driver information”, PhD thesis, Department
of Civil Engineering, Massachusetts Institute of
Technology, 1992.
-Lum M., Kinney L.L., Kumar K.S.P., “Feasibility of
a Distributed Computer Traffic Control System”,
IFAC Control in Transportation Systems, Baden-
Baden 1983, pp. 157-163
Moshe Ben-Akiva, Haris N. Koutsopoulos, Anil
Mukundan, “A Dynamic Traffic Model System For
ATMS/ATIS Operations”, IVHS Journal, 1994, Vol.
2(1), pp. 1-19

Peytchev E., “Integrative Framework for Urban
Traffic Simulation and Prediction and Confidence
Limit Analysis of the Predicted Traffic Flows“, 1998,
Ph.D. thesis (submitted), Department of Computing,
The Nottingham Trent University, Nottingham,
England.

