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ABSTRACT

The paper is concerned with a problem of explicit
granulation of data in presence of some labeled patterns
[17, 22]. The process of granulation of data is a specific
demonstration of a more general activity that of deriving
abstract data models which underpin any computer
simulation of real-life systems. It is demonstrated here that
the success of simulations depends to a large extent on the
adoption of an appropriate level of abstraction for a given
problem. The paper proposes an approach to combining
prior knowledge with the exploratory unsupervised
clustering to arrive at more representative simulation
models.

The granulation process is realized as an organic growth of
multi-dimensional hyperboxes guided by the compatibility
measure. The organic growth signifies here that there are
no prior assumptions about the number and shape of
information granules. Instead, only the relative position
and size of patterns in the pattern space determine the
progression of the granulation process.  The rationale for a
specific form of the compatibility measure is explained
using some illustrative examples. The inclusion of a small
number of labeled patterns in the input data is shown to
provide a very effective way of coping with complex
decision hyperplanes in multi-dimensional pattern spaces.
The method is illustrated using several synthetic data sets
as well as the Iris data set that is widely regarded as a
reference for the comparison of classification and
clustering algorithms.

INTRODUCTION

Granular clustering, similarly to general clustering, is
concerned with organizing and revealing structures in data.
However, the emphasis of granular clustering is on
abstracting the essential features of data so that the
emerging information granules may be used as a blueprint
for the description of systems at the higher level of
abstraction [1, 9, 20, 21, 22].

Most experimental data, available in a raw form, are
numeric. Granulation of information happens through a
process of data organization and data comprehension.
Interestingly; humans granulate information almost in a
subconscious manner. This eventually makes the ensuing
cognitive processes so effective and far superior over
processes occurring under the auspices of machine
intelligence. Two representative categories of problems in
which information granulation emerges in a profound way
involve processing of one and two-dimensional signals.
Incidentally, these two categories correspond to two major
ways in which humans perceive information about the
environment; aural and visual. In the first case, we are
concerned primarily with temporal signals. The latter case
pertains to image processing and image analysis.  In signal
processing, granulation arise as a result of temporal
sampling and aggregation. Several samples in the same time
window can be represented as an information granule. In
the simplest case, such interval can be formed by taking a
minimal and maximal value of the signal occurring in this
window of granulation. Some other ways of forming
information granules may rely on statistical analysis: one
determines a mean or median as a representative of the
numeric data points and then build a confidence interval



around it (obviously, the use of this mechanism requires
assumptions about the statistical properties of the
population contained in the window as well as the numeric
representative under discussion). Similarly, in image
processing one combines pixels exhibiting some spatial
neighborhood. Again, various features of an image can be
granulated, say brightness, texture, RGB, etc.

The input data (patterns) and the information granules
discussed in this paper are represented as hyperboxes in a
multi-dimensional pattern space. The mathematical
formalism of the interval analysis provides a robust
framework for the analysis of the granular structures that
emerge in the process of clustering.

UNSUPERVISED CLUSTERING

Before we proceed with the details of partially supervised
granular clustering, it is instructive to provide a qualitative
description of the unsupervised clustering process. The
full details are provided in a separate publication [3].

The granular clustering is carried out as the following
iterative process:
1. Identify a pair of information granules for which the

compatibility measure (defined below) attains a
maximum and build a new granule that includes both
of the identified granules; this means that a number of
granules is reduced by one in each iteration step.

2. Evaluate the termination criterion to assess whether
the process of condensing the original data does not
distort its essential features.

 
 Figure 1 illustrates how the clustering works. We start from
a collection of patterns, which can be both data points and
hyperboxes in a multi-dimensional space, and grow
progressively larger information granules. It is clear that, up
to the point of forming three information granules, the
granulation process preserves the essential characteristics
of data (grouping of data in three separate areas of the
pattern space). Granulation beyond this stage (forming two
or one granule) is counterproductive since the essence of
data is being lost. An important feature of our
unsupervised clustering technique is that the termination
criterion is implicit in the compatibility measure itself.
 
 It is important to note that while the above approach
resembles techniques of aggregative hierarchical clustering
there is a striking difference between the two approaches.
In hierarchical clustering we deal with numeric objects and
the clusters are sets of the same objects. No conceptually
new entities are formed. By contrast, here we “grow”
clusters that change “shape” (defined as a ratio of sizes
measured along individual coordinates). From iteration to
iteration the hyperboxes are evolved to capture the
information about the spatial distribution of patterns.
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 Figure 1. Snapshots of the granulation process; initial sets
of patterns (which are themselves represented as

hyperboxes) are grouped into coherent regions and
eventually into 3 large information granules.

 
 The above technique is also significantly different from the
standard min-max clustering discussed by Simpson [18, 19].
First, Simpson’s method deals with point-size data while we
consider data that is represented, in general, as hyperboxes
in the pattern space. Second, the compatibility measure
adopted in our algorithm has a very different character to
the fuzzy membership function used by Simpson.
 
 The hyperbox compatibility measure is introduced here by
considering two information granules (hyperboxes) A and
B. More explicitly we can express the granules as A(la, ua)
and B(lb, ub) to point the location of the minimum and
maximum vertices of the hyperboxes in the space. The
expression of compatibility,  compat(A, B) involves two



components that is a distance between A and B, d(A,B),
and a size of a newly formed information granule that
comes when merging A and B. The distance d(A,B)
between A and B is defined on a basis of the distance
between its extreme vertices, that is
 

 d(A, B) = (||lb-la||+ ||ub-ua||)/2
 (1)

 ||.|| is a distance defined between the two numeric vectors.
To make the framework general enough, we treat ||.|| as an Lp

distance , p>1. By chaging the value of “p” we sweep
across a spectrum of well known distances that depend
upon a particular value of “p”. For instance, p = 1 yields a
Hamming distance, L1. The value  p = 2 produces a well –
known Euclidean distance, L2. For p =∞  we refer to a
Tchebyschev distance, ∞L .

 Once A and B have been combined giving rise to a new
information granule C, its granularity can be captured by a
volume, V )(C  computed in a standard way
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 Figure 2.  Information granule C as a result of combining A
and B

 
 The two expressions (1)-(2) are the contributing factors to
the compatibility measure, compat(A, B) to be defined now
in the form
 

 compat(A, B) = 1 - d(A,B)e -αV(C)

 (4)
 The rationale behind the above form of the compatibility
measure is as follows. The candidate granules to be
clustered should not only be “close” enough (which is
reflected by the distance component) but the resulting
granule should be “compact” (meaning that the size of the
granule in every dimension is approximately equal). The
second requirement favors such A and B that give rise to a
maximum volume for a given d(A, B). The particular
exponential form of this expression has to do with the
normalization criterion so that all values are kept in the unit
interval. In particular, the volume of a point produces e-0 = 1
While the volume increases, its exponential function goes

down to zero. To retain the values of the compatibility
measure to the unit interval, all data is normalized to the
unit hypercube  [0,1]n ⊂  Rn The parameter α balances the
two concerns in the compatibility measure and is chosen so
as to control an extent to which the volume impacts the
compatibility measure.
 
 The compactness factor (e -αV(C)) introduced in the
compatibility measure is critical to the granular clustering.
By contrast, it is not essential and would not play any role
if we proceeded in a standard way and did not attempt to
develop granules but retained a cluster of numeric data.
 
 As the clustering proceeds (refer to Figure 1) the process
of merging the progressively less closely associated
patterns finds its reflection in the gradual reduction of the
compatibility measure (4). A typical plot of the evolution of
the compatibility measure over the complete clustering
cycle is shown in Figure 3.
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 Figure 3. An example of the evolution of the compatibiliy
measure over the full cycle of the clustering process.

 
 It is self evident that the proximity of patterns that are
being merged into granules at the early stages of the
clustering process, is reflected in the relatively small
gradient of the compatibility measure curve. By contrast, a
large gradient of the curve, at the final stages of the
clustering, indicates merging of incompatible clusters. The
compatibility measure curve provides therefore a
convenient reference for identifying which number of
clusters captures the essential characteristics of the input
data while providing the best generalization of them. The
intersection of the two gradient lines (as indicated in Figure
3) can be used as an approximation to the optimal number
of clusters.
 
 
 
 PARTIALLY SUPERVISED CLUSTERING
 
 The main idea behind the partially supervised clustering is
to make active use of the available classification
information in the process of maximization of the
compatibility measure. To distinguish between labeled and



unlabelled patterns we introduce a two-valued (Boolean)
pattern label vector, p=[pk], k=1, 2, …N with 0-1 entries
 
 pk = 1, if pattern is labeled
 pk = 0, otherwise
 
 In a typical case of partially supervised clustering the
number of labeled patterns is significantly lower then the

total number of patterns e.i. ∑
k

 pk  <<  N.

 The cluster-membership values of the labeled patterns are
arranged in a vector L=[lk], k=1, 2, …N, with lk ∈  {0,1, .. ,c};
c represents the highest cluster label. The maximization of
the compatibility measure on partially labeled patterns (p-
compat(A,B)) can then proceed as follows:
 
1. For a given pattern A, identify pattern B for which the

compatibility measure compat(A,B) attains
maximimum.

2. Assess the cluster labels for the identified patterns as
follows:

 2a. if  ¬ (pA ∧  pB) then
 p-compat(A,B) = compat(A,B)

 2b. if  (pA ∧  pB ∧  (lA = lB)) then
 p-compat(A,B) = compat(A,B)

 2c. if  (pA ∧  pB ∧  (lA ≠  lB)) then
 p-compat(A,B) = 0

 
3. If p-compat(A,B) > 0 then merge patterns A and B into

granule C assigning label lC = max(0, lA, lB) to the new
granule.

 
4. Select next pattern A and return to step 1 or terminate

if all patterns have been considered.

The above can be articulated as follows. Patterns
(granules) that are not labeled (case 2a) or patterns
(granules) that are labeled already with the same cluster
label (case 2b) are considered to be eligible for granulation.
Patterns (granules) that are labeled with different cluster
labels (case 2c) return the value of the compatibility
measure p-compat=0 and are therefore left as separate
entities. Once a pattern (granule) has been found to be the
nearest neighbour of the pattern (granule) labeled with
different cluster label, it does not need to be considered
any more in the granulation process since any attempt to
merge it with other patterns would potentially increase
overlap between clusters.

To illustrate the outcome of the partially supervised
clustering Table 1 lists a subset of cases that are relevant
for 3 patterns and 3 iterative steps of the algorithm. The full
set of cases can be obtained by performing twice circular
substitutions (2->1 and 3->2 and 1->3).

Table 1.
Cluster labels for 3 patterns processed by

the partially supervised clustering algorithm

Step 1 Step 2 Step 3
0 , 0 , 0 0 , 0 0
0 , 0 , 1 0 , 1 1
0 , 1 , 0 1 , 0 1
0 , 1 , 1 1 , 1 1
1 , 0 , 0 1 , 0 1
1 , 0 , 1 1 , 1 1
1 , 0 , 2 1 , 2 1 , 2
1 , 1 , 0 1 , 0 1
1 , 1 , 1 1 , 1 1
1 , 1 , 2 1 , 2 1 , 2
1 , 1 , 3 1 , 3 1 , 3
1 , 2 , 0 1 , 2 , 0 1 , 2
1 , 2 , 1 1 , 2 , 1 1 , 2 , 1
1 , 2 , 2 1 , 2 , 2 1 , 2
1 , 2 , 3 1 , 2 , 3 1 , 2 , 3
1 , 3 , 0 1 , 3 , 0 1 , 3
1 , 3 , 1 1 , 3 , 1 1 , 3 , 1
1 , 3 , 2 1 , 3 , 2 1 , 3 , 2
1 , 3 , 3 1 , 3 , 3 1 , 3

The fact that the partially supervised clustering does not
necessarily result in merging two patterns (granules) in
each iterative step of the algorithm implies that there may
be a significant number of granules left at the end of the
process. A typical evolution of the compatibility measure is
presented in Figure 4. It is clear that rather than identifying
the number of clusters (by tracing asymptotic gradients of
the curve) we identify here a number of granules for which
the compatibility measure saturates before reaching the
flection point. In other words, we find a set of granules,
which cannot be reduced further without causing a
deliberate overlap of clusters.
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 Figure 4. An example of the evolution of the compatibiliy
measure in a partially supervised granular clustering.

SIMULATION STUDIES

This section summarises several numerical experiments
involving synthetic data sets and the well-known IRIS data
set. The patterns were clustered using partially supervised
granular clustering algorithm under the control of the
compatibility measure. The proportion of the labeled



patterns was varied from 10% to 20% so that their relative
importance of labeled patterns could be assessed.
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Figure 5. Synthetic 2-dimensional data.
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Figure 6. Unsupervised clustering results in identifying
4 clusters in the data.
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Figure 7. Partially supervised granular clustering with 10%
of labeled data.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8. Partially supervised granular clustering with 20%
of labeled data.

The results show that the performance of the partially
supervised clustering is much superior to the unsupervised
clustering counterpart. While the misclassification of
patterns (the assignment of patterns from separate clusters
to the same hyperbox) is over 60% in the case of
unsupervised clustering, the inclusion of 10% of labeled
data reduces the misclassification rate to approx. 30%. This
is further reduced to less then 8% when the proportion of
labeled data is increased to 20%. For 30% or more of
labeled patterns the misclassification rate reduces to zero.

The proportion of labeled data that is needed to avoid
misclassifications is clearly dependent on the topology of
the clusters. The second numerical experiment is intended
to explore this dependency by investigating a more
complex topology of clusters. The two-dimensional set of
patterns shown in Figure 9 consists of four overlapping
clusters. Two of the clusters are ellipsoidal while the
remaining two form a diagonal cross-pattern resembling the
standard EX-OR problem. Overall, the diversity of forms of
the clusters along with their distribution makes the problem
quite challenging for unsupervised learning. The effect of
partial supervision, in the context of this system, is quite
remarkable significantly improving the outcomes of
clustering. Obviously, to take full advantage of granular
clustering with partial supervision one should ensure that
the labeled patterns are representative of the respective
clusters. Using all labeled patterns from the same class is
not very instrumental to the improvement of the overall
classification results. In a series of experiments we have
attempted to quantify this effect. The percentage of labeled
patterns was varied from 5% through to 20% with a 5%
increment. The labeled patterns were selected on a random
basis and, to provide a degree if independence from the
characteristics of this random process, the selection was
repeated 20 times for each percentage of the labeled
patterns. The results showed significant consistency and
are meaningfully reproducible.
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Figure 9. Synthetic 4-cluster data set
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Figure 10. Unsupervised clustering
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Figure 11. Partially supervised clustering with  5%;
 10%;  15% and  20% of labeled patterns.

By cross-referencing Figures 9, 10 and 11 it is possible to
see that even with 10% of labeled patterns the granular
clustering method manages to avoid misclassifications. As
could be expected, the misclassification in the area of
intersection of two diagonal clusters, does occur for small
proportion of labeled patterns. However, the experiments
show that this is easily resolved by increasing the
proportion of labeled patterns to 10% or more. Such an
increase resulted in a 0% misclassification rate. Overall the
method seems to have delivered highly satisfactory results.

We apply now the method to, a well known and widely
regarded as the reference data set for pattern recognition,
the IRIS data set. It contains three categories of species of
Iris such as Iris Setosa, (C1) Iris Versicolor (C2) and Iris
Virginica  (C3) represented in two-dimensional space of
petal length and width. The objects have been clustered
using unsupervised and partially supervised clustering
algorithm.
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Figure 12. Unsupervised clustering
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Figure 13. Partially supervised clustering
(10% of labeled patterns)
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Figure 14. Partially supervised clustering
(20 % of labeled patterns)

The unsupervised clustering algorithm identifies correctly
that there are three types of patterns but the overlap
between the clusters is not being resolved. This produces a
large misclassification rate. By contrast, partially
supervised clustering manages to adjust the sizes of
hyperboxes so that in the area of cluster overlap there are
smaller hyperboxes covering the pattern space. This is a
very desirable feature because it enables formation of
clusters that have complex topology using a smaller
number of hyperboxes (granules).

CONCLUSION

The paper has presented a method of partially supervised
granular clustering as a constructive approach to capturing
the essence of large collection of numeric data. The
approach emphasizes the value of explicit information
granulation under the control of compatibility measure. It
has been shown that while the topology of some clusters is
well approximated by a single hyperbox, in general, there is
a need for a collection of hyperboxes to describe a cluster.
Using partially supervised granular clustering approach it
has been shown that it is possible to achieve a good
compromise between the accuracy of cluster representation
(absence of misclassifications) and the number of
hyperboxes (information granules) forming a cluster. This
lays foundation for the development of simulation models
that are capturing the essence of real-life systems without
being distracted by the unnecessary detail.



It should be stressed that the proposed approach to data
analysis is noninvasive meaning that we have not
attempted to formulate specific assumptions about the
distribution of the data but rather allow data to demonstrate
its essential features. The granulation mechanism puts the
features existing in the problem in a new perspective. They
can be regarded as the composite of the basic
characteristics of hyperboxes (granules) such as position,
size, shape and number.
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