
January 31st 2005

Introduction to Neural Networks and Data Mining – lecture 3
BARGIELA Andrzej (ISM – NTU, Hirota Lab. – TITech)

13. Classification

13.1. Discriminants

Neural networks can also be used to classify data. Unlike regression problems, where
the goal is to produce a particular output value for a given input, classification problems
require us to label each data point as belonging to one of n classes. Neural networks can
do this by learning a discriminant function, which separates the classes. For example,
a network with a single linear output can solve a two-class problem by learning a
discriminant function which is greater than zero for one class, and less than zero for the
other. Fig. 6 shows two such two-class problems, with filled dots belonging to one class,
and unfilled dots to the other. In each case, a line is drawn where a discriminant
function that separates the two classes is zero.

Figure 6.

On the left side, a straight line can serve as a discriminant: we can place the line such
that all filled dots lie on one side, and all unfilled ones lie on the other. The classes are
said to be linearly separable. Such problems can be learned by neural networks that
have no hidden units. On the right side, a highly non-linear function is required to
ensure class separation. This problem can be solved only by a neural network with
hidden units.

13.2. Binomial

To use a neural network for classification, we need to construct an equivalent function
approximation problem by assigning a target value for each class. For a binomial (two-
class) problem we can use a network with a single output y, and binary target values: 1
for one class, and 0 for the other. We can thus interpret the network's output as an
estimate of the probability that a given pattern belongs to the '1' class. To classify a new
pattern after training, we then employ the maximum likelihood discriminant, y > 0.5.

A network with linear output used in this fashion, however, will expend a lot of its
effort on getting the target values exactly right for its training points - when all we
actually care about is the correct positioning of the discriminant. The solution is to use
an activation function at the output that saturates at the two target values: such a
function will be close to the target value for any net input that is sufficiently large and
has the correct sign. Specifically, we use the logistic sigmoid function

Given the probabilistic interpretation, a network output of, say, 0.01 for a pattern that is
actually in the '1' class is a much more serious error than, say, 0.1. Unfortunately the
sum-squared loss function makes almost no distinction between these two cases. A loss
function that is appropriate for dealing with probabilities is the cross-entropy error. For
the two-class case, it is given by

When logistic output units and cross-entropy error are used together in backpropagation
learning, the error signal for the output unit becomes just the difference between target
and output:

In other words, implementing cross-entropy error for this case amounts to nothing more
than omitting the f'(net) factor that the error signal would otherwise get multiplied by.
This is not an accident, but indicative of a deeper mathematical connection: cross-
entropy error and logistic outputs are the "correct" combination to use for binomial
probabilities, just like linear outputs and sum-squared error are for scalar values.

13.3. Multinomial

If we have multiple independent binary attributes by which to classify the data, we can
use a network with multiple logistic outputs and cross-entropy error. For multinomial
classification problems (1-of-n, where n > 2) we use a network with n outputs, one

corresponding to each class, and target values of 1 for the correct class, and 0 otherwise.
Since these targets are not independent of each other, however, it is no longer
appropriate to use logistic output units. The corect generalization of the logistic sigmoid
to the multinomial case is the softmax activation function:

where o ranges over the n output units. The cross-entropy error for such an output layer
is given by

Since all the nodes in a softmax output layer interact (the value of each node depends on
the values of all the others), the derivative of the cross-entropy error is difficult to
calculate. Fortunately, it again simplifies to

so we don't have to worry about it.

14. Non-supervised learning

It is possible to use neural networks to learn about data that contains neither target
outputs nor class labels. There are many tricks for getting error signals in such non-
supervised settings; here we'll briefly discuss a few of the most common approaches:
autoassociation, time series prediction, and reinforcement learning.

14.1. Autoassociation

Autoassociation is based on a simple idea: if you have inputs but no targets, just use the
inputs as targets. An autoassociator network thus tries to learn the identity function.
This is only non-trivial if the hidden layer forms an information bottleneck - contains
less units than the input (output) layer, so that the network must perform
dimensionality reduction (a form of data compression).

A linear autoassociator trained with sum-squared error in effect performs principal
component analysis (PCA), a well-known statistical technique. PCA extracts the
subspace (directions) of highest variance from the data. As was the case with regression,
the linear neural network offers no direct advantage over known statistical methods, but
it does suggest an interesting nonlinear generalization:

Figure

This nonlinear autoassociator includes a hidden layer in both the encoder and the
decoder part of the network. Together with the linear bottleneck layer, this gives a
network with at least 3 hidden layers. Such a deep network should be preconditioned if
it is to learn successfully.

14.2. Time series prediction

When the input data x forms a temporal series, an important task is to predict the next
point: the weather tomorrow, the stock market 5 minutes from now, and so on. We can
(attempt to) do this with a feedforward network by using time-delay embedding: at
time t, we give the network x(t), x(t-1), ... x(t-d) as input, and try to predict x(t+1) at the
output. After propagating activity forward to make the prediction, we wait for the actual
value of x(t+1) to come in before calculating and backpropagating the error. Like all
neural network architecture parameters, the dimension d of the embedding is an
important but difficult choice.

A more powerful (but also more complicated) way to model a time series is to use
recurrent neural networks.

14.3. Reinforcement learning

Sometimes we are faced with the problem of delayed reward: rather than being told the
correct answer for each input pattern immediately, we may only occasionally get a
positive or negative reinforcement signal to tell us whether the entire sequence of

actions leading up to this was good or bad. Reinforcement learning provides ways to get
a continuous error signal in such situations.

Q-learning associates an expected utility (the Q-value) with each action possible in a
particular state. If at time t we are in state s(t) and decide to perform action a(t), the
corresponding Q-value is updated as follows:

where r(t) is the instantaneous reward resulting from our action, s(t+1) is the state that
it led to, a are all possible actions in that state, and gamma <= 1 is a discount factor
that leads us to prefer instantaneous over delayed rewards.

A common way to implement Q-learning for small problems is to maintain a table of Q-
values for all possible state/action pairs. For large problems, however, it is often
impossible to keep such a large table in memory, let alone learn its entries in reasonable
time. In such cases a neural network can provide a compact approximation of the Q-
value function. Such a network takes the state s(t) as its input, and has an output ya for
each possible action. To learn the Q-value Q(s(t), a(t)), it uses the right-hand side of the
above Q-iteration as a target:

Note that since we require the network's outputs at time t+1 in order to calculate its
error signal at time t, we must keep a one-step memory of all input and hidden node
activity, as well as the most recent action. The error signal is applied only to the output
corresponding to that action; all other output nodes receive no error (they are "don't
cares").

TD-learning is a variation that assigns utility values to states alone rather than
state/action pairs. This means that search must be used to determine the value of the
best successor state. TD() replaces the one-step memory with an exponential average
of the network's gradient; this is similar to momentum, and can help speed the transport
of delayed reward signals across large temporal distances.

One of the most successful applications of neural networks is TD-Gammon, a network
that used TD() to learn the game of backgammon from scratch, by playing only
against itself. TD-Gammon is now the world's strongest backgammon program, and
plays at the level of human grandmasters.

15. Recurrent Networks

Consider the following two networks:

Figure. 1

The network on the left is a simple feed forward network of the kind we have already
met. The right hand network has an additional connection from the hidden unit to itself.
What difference could this little weight make?

Each time a pattern is presented, the unit computes its activation just as in a feed
forward network. However its net input now contains a term, which reflects the state of
the network (the hidden unit activation) before the pattern was seen. When we present
subsequent patterns, the hidden and output units' states will be a function of everything
the network has seen so far. The network has a sense of history, and we must think of
pattern presentation as it happens in time.

15.1. Network topology

Once we allow feedback connections, our network topology becomes very free: we can
connect any unit to any other, even to itself. Two of our basic requirements for
computing activations and errors in the network are now violated. When computing
activations, we required that before computing yi, we had to know the activations of all

units in the anterior set, Ai. For computing errors, we required that before computing ,
we had to know the errors of all units in its posterior set Pj.

For an arbitrary unit in a recurrent network, we now define its activation at time t as:

yi(t) = fi(neti(t-1))

At each time step, therefore, activation propagates forward through one layer of
connections only. Once some level of activation is present in the network, it will
continue to flow around the units, even in the absence of any new input whatsoever. We
can now present the network with a time series of inputs, and require that it produce an
output based on this series. This presents a whole set of new problems, which can be
addressed by the networks, as well as some rather difficult matters concerning training.

Before we address the new issues in training and operation of recurrent neural networks,
let us first look at some sample tasks, which have been attempted (or solved) by such
networks.

• Speech recognition

In some of the best speech recognition systems built so far,
speech is first presented as a series of spectral slices to a recurrent
network. Each output of the network represents the probability of
a specific phonem (speech sound, e.g. /i/, /p/, etc), given both
present and recent input. The probabilities are then interpreted by
a Hidden Markov Model, which tries to recognize the whole
utterance.

• Music composition

A recurrent network can be trained by presenting it with the notes
of a musical score. It's task is to predict the next note. Obviously
this is impossible to do perfectly, but the network learns that
some notes are more likely to occur in one context than another.
Training, for example, on a lot of music by J. S. Bach, we can
then seed the network with a musical phrase, let it predict the
next note, feed this back in as input, and repeat, generating new
music. Music generated in this fashion typically sounds fairly
convincing at a very local scale, i.e. within a short phrase. At a
larger scale, however, the compositions wander randomly from
key to key, and no global coherence arises. This is an interesting
area for further work....

15.2. The simple recurrent network

One way to meet these requirements is illustrated below in a network known variously
as an Elman network (after Jeff Elman, the originator), or as a Simple Recurrent
Network. At each time step, a copy of the hidden layer units is made to a copy layer.
Processing is done as follows:

1. Copy inputs for time t to the input units
2. Compute hidden unit activations using net input from input units and from copy

layer
3. Copy new hidden unit activations to copy layer
4. Compute output unit activations as usual

Figure 2.

In computing the activation, we have eliminated cycles, and so our requirement that the
activations of all posterior nodes be known is met. Likewise, in computing errors, all
trainable weights are feed forward only, so we can apply the standard backpropagation
algorithm as before. The weights from the copy layer to the hidden layer play a special
role in error computation. The error signal they receive comes from the hidden units,
and so depends on the error at the hidden units at time t. The activations in the hidden
units, however, are just the activation of the hidden units at time t-1. Thus, in training,
we are considering a gradient of an error function, which is determined by the
activations at the present and the previous time steps.

A generalization of this approach is to copy the input and hidden unit activations for a
number of previous timesteps. The more context (copy layers) we maintain, the more
history we are explicitly including in our gradient computation. This approach has
become known as Back Propagation Through Time. It can be seen as an approximation
to the ideal of computing a gradient which takes into consideration not just the most
recent inputs, but all inputs seen so far by the network. The figure below illustrates one
version of the process:

The inputs and hidden unit activations at the last three time steps are stored. The solid
arrows show how each set of activations is determined from the input and hidden unit
activations on the previous time step. A backward pass, illustrated by the dashed
arrows, is performed to determine separate values of delta (the error of a unit with
respect to its net input) for each unit and each time step separately. Because each earlier
layer is a copy of the layer one level up, we introduce the new constraint that the
weights at each level be identical. Then the partial derivative of the negative error with
respect to wi,j is simply the sum of the partials calculated for the copy of wi,j between
each two layers.

Figure 3.

Elman networks and their generalization, Back Propagation Through Time, both seek to
approximate the computation of a gradient based on all past inputs, while retaining the
standard back prop algorithm. In the next section we will see how we can compute the
true temporal gradient using a method known as Real Time Recurrent Learning.

16. Real Time Recurrent Learning

In deriving a gradient-based update rule for recurrent networks, we now make network
connectivity very unconstrained. We simply suppose that we have a set of input units, I
= {xk(t), 0<k<m}, and a set of other units, U = {yk(t), 0<k<n}, which can be hidden or
output units. To index an arbitrary unit in the network we can use

(1)

Let W be the weight matrix with n rows and n+m columns, where wi,j is the weight to
unit i (which is in U) from unit j (which is in I or U). Units compute their activations in
the now familiar way, by first computing the weighted sum of their inputs:

(2)

where the only new element in the formula is the introduction of the temporal index t.
Units then compute some non-linear function of their net input

yk(t+1) = fk(netk(t)) (3)

Usually, both hidden and output units will have non-linear activation functions. Note
that external input at time t does not influence the output of any unit until time t+1. The
network is thus a discrete dynamical system.

Some of the units in U are output units, for which a target is defined. A target may not
be defined for every single input however. For example, if we are presenting a string to
the network to be classified as either grammatical or ungrammatical, we may provide a
target only for the last symbol in the string. In defining an error over the outputs,
therefore, we need to make the error time dependent too, so that it can be undefined (or
0) for an output unit for which no target exists at present. Let T(t) be the set of indices k
in U for which there exists a target value dk(t) at time t. We are forced to use the
notation dk instead of t here, as t now refers to time. Let the error at the output units be

(4)

and define our error function for a single time step as

(5)

The error function we wish to minimize is the sum of this error over all past steps of the
network

(6)

Now, because the total error is the sum of all previous errors and the error at this time
step, so also, the gradient of the total error is the sum of the gradient for this time step
and the gradient for previous steps

(7)

As a time series is presented to the network, we can accumulate the values of the
gradient, or equivalently, of the weight changes. We thus keep track of the value

(8)

After the network has been presented with the whole series, we alter each weight wij by

(9)

We therefore need an algorithm that computes

(10)

at each time step t. Since we know ek(t) at all times (the difference between our targets

and outputs), we only need to find a way to compute the second factor .

IMPORTANT

The key to understanding RTRL is to appreciate what this factor
expresses. It is essentially a measure of the sensitivity of the value of the
output of unit k at time t to a small change in the value of wij, taking into
account the effect of such a change in the weight over the entire network
trajectory from t0 to t. Note that wij does not have to be connected to unit
k. Thus this algorithm is non-local, in that we need to consider the effect
of a change at one place in the network on the values computed at an
entirely different place. Make sure you understand this before you dive
into the derivation given next

16.1. Derivation of time-dependent sensitivity of outputs

This is given here for completeness, for those who wish perhaps to implement RTRL.

Make sure you at least know what role the factor plays in computing the
gradient.

From Equations 2 and 3, we get

(11)

where is the Kronecker delta

(12)

[Exercise: Derive Equation 11 from Equations 2 and 3]

Because input signals do not depend on the weights in the network,

(13)

Equation 11 becomes:

(14)

This is a recursive equation. That is, if we know the value of the left hand side for time
0, we can compute the value for time 1, and use that value to compute the value at time
2, etc. Because we assume that our starting state (t = 0) is independent of the weights,
we have

(15)

These equations hold for all .

We therefore need to define the values

(16)

for every time step t and all appropriate i, j and k. We start with the initial condition

pij
k(t0) = 0 (17)

and compute at each time step

(18)

The algorithm then consists of computing, at each time step t, the quantities pij
k(t) using

equations 17 and 18, and then using the differences between targets and actual outputs
to compute weight changes

(19)

and the overall correction to be applied to wij is given by

(20)

17. Dynamics of RNNs

Consider the recurrent network illustrated below. A single input unit is connected to
each of the three "hidden" units. Each hidden unit in turn is connected to itself and the
other hidden units. As in the RTRL derivation, we do not distinguish now between
hidden and output units. Any activation which enters the network through the input
node can flow around from one unit to another, potentially forever. Weights less than
1.0 will exponentially reduce the activation, weights larger than 1.0 will cause it to
increase. The non-linear activation functions of the hidden units will hopefully prevent
it from growing without bound.

Figure 1.

As we have three hidden units, their activation at any given time t describes a point in a
3-dimensional state space. We can visualize the temporal evolution of the network state
by watching the state evolve over time.

In the absence of input, or in the presence of a steady-state input, a network will usually
approach a fixed point attractor. Other behaviors are possible, however. Networks can
be trained to oscillate in regular fashion, and chaotic behavior has also been observed.
The development of architectures and algorithms to generate specific forms of dynamic
behavior is still an active research area.

Figure. Xx

17.1. Some limitations of gradient methods and RNNs.

The simple recurrent network computed a gradient based on the present state of the
network and its state one time step ago. Using Back Prop Through Time, we could
compute a gradient based on some finite n time steps of network operation. RTRL
provided a way of computing the true gradient based on the complete network history
from time 0 to the present. Is this perfection?

Unfortunately not. With feedforward networks, which have a large number of layers,
the weights which are closest to the output are the easiest to train. This is no surprise, as
their contribution to the network error is direct and easily measurable. Every time we
back propagate an error one layer further back, however, our estimate of the
contribution of a particular weight to the observed error becomes more indirect. You
can think of error flowing in the top of the network in distinct streams. Each back
propagation dilutes the error, mixing up error from distinct sources, until, far back in the
network, it becomes virtually impossible to tell who is responsible for what. The error
signal has become completely diluted.

With RTRL and BPTT we face a similar problem. Error is now propagated back in
time, but each time step is exactly equivalent to propagating through an additional layer
of a feed forward network. The result, of course, is that it becomes very difficult to
assess the importance of the network state at times, which lie far back in the past.
Typically, gradient based networks cannot reliably use information which lies more
than about 10 time steps in the past. If you now imagine an attempt to use a recurrent
neural network in a real life situation, e.g. monitoring an industrial process, where data
are presented as a time series at some realistic sampling rate (say 100 Hz), it becomes
clear that these networks are of limited use. The next section shows a recent model,
which tries to address this problem.

18. Long Short-Term Memory

In a recurrent network, information is stored in two distinct ways. The activations of the
units are a function of the recent history of the model, and so form a short-term
memory. The weights too form a memory, as they are modified based on experience,
but the timescale of the weight change is much slower than that of the activations. We
call those “a long-term memory”. The Long Short-Term Memory model is an attempt to
allow the unit activations to retain important information over a much longer period of
time than the 10 to 12 time steps, which is the limit of RTRL or BPTT models.

The figure below shows a maximally simple LSTM network, with a single input, a
single output, and a single memory block in place of the familiar hidden unit.

Figure xx

This figure above shows a maximally simple LSTM network, with a single input, a
single output, and a single memory block in place of the familiar hidden unit. Each
block has two associated gate units (details below). Each layer may, of course, have
multiple units or blocks. In a typical configuration, the first layer of weights is provided
from input to the blocks and gates. There are then recurrent connections from one block

to other blocks and gates. Finally there are weights from the blocks to the outputs. The
next figure shows the details of the memory block in more detail.

Figure xx

The hidden units of a conventional recurrent neural network have now been replaced by
memory blocks, each of which contains one or more memory cells. At the heart of the
cell is a simple linear unit with a single self-recurrent connection with weight set to 1.0.
In the absence of any other input, this connection serves to preserve the cell's current
state from one moment to the next. In addition to the self-recurrent connection, cells
receive input from input units and other cell and gates. While the cells are responsible
for maintaining information over long periods of time, the responsibility for deciding
what information to store, and when to apply that information lies with an input and
output gating unit, respectively.

The input to the cell is passed through a non-linear squashing function (g(x), typically
the logistic function, scaled to lie within [-2,2]), and the result is then multiplied by the
output of the input gating unit. The activation of the gate ranges over [0,1], so if its
activation is near zero, nothing can enter the cell. Only if the input gate is sufficiently
active is the signal allowed in. Similarly, nothing emerges from the cell unless the
output gate is active. As the internal cell state is maintained in a linear unit, its
activation range is unbounded, and so the cell output is again squashed when it is
released (h(x), typical range [-1,1]). The gates themselves are nothing more than

conventional units with sigmoidal activation functions ranging over [0,1], and they each
receive input from the network input units and from other cells.

Thus we have:

• Cell output: yc
j(t) is

yc
j(t) = yout

j(t) h(scj(t))

• where yout
j(t) is the activation of the output gate, and the state, scj(t) is given by

scj(0) = 0, and

scj(t) = scj(t-1) + yin
j(t) g(netcj(t)) for t > 0.

This division of responsibility---the input gates decide what to store, the cell stores
information, and the output gate decides when that information is to be applied---has the
effect that salient events can be remembered over arbitrarily long periods of time.
Equipped with several such memory blocks, the network can effectively attend to events
at multiple time scales.

Network training uses a combination of RTRL and BPTT, and we won't go into the
details here. However, consider an error signal being passed back from the output unit.
If it is allowed into the cell (as determined by the activation of the output gate), it is now
trapped, and it gets passed back through the self-recurrent connection indefinitely. It can
only affect the incoming weights, however, if it is allowed to pass by the input gate.

On selected problems, an LSTM network can retain information over arbitrarily long
periods of time; over 1000 time steps in some cases. This gives it a significant
advantage over RTRL and BPTT networks on many problems. In particular LSTM have
been used to distinguish between different spoken languages based on speech prosody
(roughly: the melody and rhythm of speech).

Acknowledgements

Prof. Bargiela would like to acknowledge JSPS funding to deliver a series of lectures on
Neural Networks and Data Mining for postgraduate students at the Tokyo Institute of
Technology. The lectures have been prepared using the web material produced by
Nicolas Schraudolph and Fred Cummins from IDISIA, Switzerland and the book by
David MacKay entitled Information Theory, Inference and Learning Algorithms
published by Cambridge University Press.

Bibliography

Schraudolph and Graepel, Towards Stochastic Conjugate Gradient Methods, Proc. 9th
Intl. Conf. Neural Information Processing, Singapore. IEEE, 2002

Graepel and Schraudolph, Stable Adaptive Momentum for Rapid Online Learning in
Nonlinear Systems, Proc. Intl. Conf. Artificial Neural Networks, Madrid. Springer
Verlag, Berlin 2002

Schraudolph and Giannakopoulos, Online Independent Component Analysis With Local
Learning Rate Adaptation, Advances in Neural Information Processing Systems 12,
MIT Press, Cambridge 2000

Schraudolph, Slope Centering: Making Shortcut Weights Effective, Proc. 8th
International Conference on Artificial Neural Networks, Skövde. Springer Verlag,
Berlin 1998

Schraudolph, Centering Neural Network Gradient Factors, in: Orr and Müller (eds.),
Neural Networks: Tricks of the Trade, Springer Verlag, Berlin 1998

Schraudolph and Sejnowski, Tempering Backpropagation Networks: Not All Weights
are Created Equal, Advances in Neural Information Processing Systems 8, MIT Press,
Cambridge 1996

Schraudolph, Dayan, and Sejnowski, Learning to Evaluate Go Positions via Temporal
Difference Methods, in: Baba and Jain (eds.), Computational Intelligence in Games,
Springer Verlag, Berlin 2001

Schmidhuber, Zhao, and Schraudolph, Reinforcement Learning with Self-Modifying
Policies, in: Learning to Learn, Kluwer Academic Publishers, Norwell 1998

Schraudolph, Eldracher, and Schmidhuber, Processing Images by Semi-Linear
Predictability Minimization, Network: Computation in Neural Systems 10(2), 1999

Cummins, F., Prosodic characteristics of synchronous speech, in Puppel, S. and
Demenko, G., editors, Prosody 2000: Speech Recognition and Synthesis, pages 45--49,
Krakow, Poland. Adam Mickiewicz University, 2000.

Gers, F. A., Schmidhuber, J., and Cummins, F., Learning to forget: Continual prediction
with LSTM, Neural Computation 12 (10):2451—2471, 2000.

Cummins, F., Doherty, C., and Dilly, L., Discrimination of pitch change in speech- and
non-speech stimuli, In Proceedings of the 15th Artificial Intelligence and Cognitive
Science Conference, pages 29-38, Castlebar, Ireland, 2004.

David MacKay, Information Theory, Inference and Learning Algorithms, Cambridge
University Press, 2005

