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13. Classification 
 
13.1. Discriminants 
 
Neural networks can also be used to classify data. Unlike regression problems, where 
the goal is to produce a particular output value for a given input, classification problems 
require us to label each data point as belonging to one of n classes. Neural networks can 
do this by learning a discriminant function, which separates the classes. For example, 
a network with a single linear output can solve a two-class problem by learning a 
discriminant function which is greater than zero for one class, and less than zero for the 
other. Fig. 6 shows two such two-class problems, with filled dots belonging to one class, 
and unfilled dots to the other. In each case, a line is drawn where a discriminant 
function that separates the two classes is zero. 
 

 
 
Figure 6. 
 

On the left side, a straight line can serve as a discriminant: we can place the line such 
that all filled dots lie on one side, and all unfilled ones lie on the other. The classes are 
said to be linearly separable. Such problems can be learned by neural networks that 
have no hidden units. On the right side, a highly non-linear function is required to 
ensure class separation. This problem can be solved only by a neural network with 
hidden units.  

 
 



 
13.2. Binomial 

To use a neural network for classification, we need to construct an equivalent function 
approximation problem by assigning a target value for each class. For a binomial (two-
class) problem we can use a network with a single output y, and binary target values: 1 
for one class, and 0 for the other. We can thus interpret the network's output as an 
estimate of the probability that a given pattern belongs to the '1' class. To classify a new 
pattern after training, we then employ the maximum likelihood discriminant, y > 0.5.  

A network with linear output used in this fashion, however, will expend a lot of its 
effort on getting the target values exactly right for its training points - when all we 
actually care about is the correct positioning of the discriminant. The solution is to use 
an activation function at the output that saturates at the two target values: such a 
function will be close to the target value for any net input that is sufficiently large and 
has the correct sign. Specifically, we use the logistic sigmoid function  

 

Given the probabilistic interpretation, a network output of, say, 0.01 for a pattern that is 
actually in the '1' class is a much more serious error than, say, 0.1. Unfortunately the 
sum-squared loss function makes almost no distinction between these two cases. A loss 
function that is appropriate for dealing with probabilities is the cross-entropy error. For 
the two-class case, it is given by  

 

When logistic output units and cross-entropy error are used together in backpropagation 
learning, the error signal for the output unit becomes just the difference between target 
and output:  

 

In other words, implementing cross-entropy error for this case amounts to nothing more 
than omitting the f'(net) factor that the error signal would otherwise get multiplied by. 
This is not an accident, but indicative of a deeper mathematical connection: cross-
entropy error and logistic outputs are the "correct" combination to use for binomial 
probabilities, just like linear outputs and sum-squared error are for scalar values.  

13.3. Multinomial 

If we have multiple independent binary attributes by which to classify the data, we can 
use a network with multiple logistic outputs and cross-entropy error. For multinomial 
classification problems (1-of-n, where n > 2) we use a network with n outputs, one 



corresponding to each class, and target values of 1 for the correct class, and 0 otherwise. 
Since these targets are not independent of each other, however, it is no longer 
appropriate to use logistic output units. The corect generalization of the logistic sigmoid 
to the multinomial case is the softmax activation function:  

 

where o ranges over the n output units. The cross-entropy error for such an output layer 
is given by  

 

Since all the nodes in a softmax output layer interact (the value of each node depends on 
the values of all the others), the derivative of the cross-entropy error is difficult to 
calculate. Fortunately, it again simplifies to  

 
 
so we don't have to worry about it.  
 
 
14. Non-supervised learning 
 
It is possible to use neural networks to learn about data that contains neither target 
outputs nor class labels. There are many tricks for getting error signals in such non-
supervised settings; here we'll briefly discuss a few of the most common approaches: 
autoassociation, time series prediction, and reinforcement learning. 
 
14.1. Autoassociation 

Autoassociation is based on a simple idea: if you have inputs but no targets, just use the 
inputs as targets. An autoassociator network thus tries to learn the identity function. 
This is only non-trivial if the hidden layer forms an information bottleneck - contains 
less units than the input (output) layer, so that the network must perform 
dimensionality reduction (a form of data compression).  

A linear autoassociator trained with sum-squared error in effect performs principal 
component analysis (PCA), a well-known statistical technique. PCA extracts the 
subspace (directions) of highest variance from the data. As was the case with regression, 
the linear neural network offers no direct advantage over known statistical methods, but 
it does suggest an interesting nonlinear generalization:  



 
 
Figure  
 

This nonlinear autoassociator includes a hidden layer in both the encoder and the 
decoder part of the network. Together with the linear bottleneck layer, this gives a 
network with at least 3 hidden layers. Such a deep network should be preconditioned if 
it is to learn successfully.  

14.2. Time series prediction 

When the input data x forms a temporal series, an important task is to predict the next 
point: the weather tomorrow, the stock market 5 minutes from now, and so on. We can 
(attempt to) do this with a feedforward network by using time-delay embedding: at 
time t, we give the network x(t), x(t-1), ... x(t-d) as input, and try to predict x(t+1) at the 
output. After propagating activity forward to make the prediction, we wait for the actual 
value of x(t+1) to come in before calculating and backpropagating the error. Like all 
neural network architecture parameters, the dimension d of the embedding is an 
important but difficult choice.  

A more powerful (but also more complicated) way to model a time series is to use 
recurrent neural networks.  

14.3. Reinforcement learning 

Sometimes we are faced with the problem of delayed reward: rather than being told the 
correct answer for each input pattern immediately, we may only occasionally get a 
positive or negative reinforcement signal to tell us whether the entire sequence of 



actions leading up to this was good or bad. Reinforcement learning provides ways to get 
a continuous error signal in such situations.  

Q-learning associates an expected utility (the Q-value) with each action possible in a 
particular state. If at time t we are in state s(t) and decide to perform action a(t), the 
corresponding Q-value is updated as follows:  

 

where r(t) is the instantaneous reward resulting from our action, s(t+1) is the state that 
it led to, a are all possible actions in that state, and gamma <= 1 is a discount factor 
that leads us to prefer instantaneous over delayed rewards.  

A common way to implement Q-learning for small problems is to maintain a table of Q-
values for all possible state/action pairs. For large problems, however, it is often 
impossible to keep such a large table in memory, let alone learn its entries in reasonable 
time. In such cases a neural network can provide a compact approximation of the Q-
value function. Such a network takes the state s(t) as its input, and has an output ya for 
each possible action. To learn the Q-value Q(s(t), a(t)), it uses the right-hand side of the 
above Q-iteration as a target:  

     

Note that since we require the network's outputs at time t+1 in order to calculate its 
error signal at time t, we must keep a one-step memory of all input and hidden node 
activity, as well as the most recent action. The error signal is applied only to the output 
corresponding to that action; all other output nodes receive no error (they are "don't 
cares").  

TD-learning is a variation that assigns utility values to states alone rather than 
state/action pairs. This means that search must be used to determine the value of the 
best successor state. TD( ) replaces the one-step memory with an exponential average 
of the network's gradient; this is similar to momentum, and can help speed the transport 
of delayed reward signals across large temporal distances.  

One of the most successful applications of neural networks is TD-Gammon, a network 
that used TD( ) to learn the game of backgammon from scratch, by playing only 
against itself. TD-Gammon is now the world's strongest backgammon program, and 
plays at the level of human grandmasters.  

15. Recurrent Networks 

Consider the following two networks:  



 

Figure. 1 

The network on the left is a simple feed forward network of the kind we have already 
met. The right hand network has an additional connection from the hidden unit to itself. 
What difference could this little weight make?  

Each time a pattern is presented, the unit computes its activation just as in a feed 
forward network. However its net input now contains a term, which reflects the state of 
the network (the hidden unit activation) before the pattern was seen. When we present 
subsequent patterns, the hidden and output units' states will be a function of everything 
the network has seen so far. The network has a sense of history, and we must think of 
pattern presentation as it happens in time.  

15.1. Network topology 

Once we allow feedback connections, our network topology becomes very free: we can 
connect any unit to any other, even to itself. Two of our basic requirements for 
computing activations and errors in the network are now violated. When computing 
activations, we required that before computing yi, we had to know the activations of all 

units in the anterior set, Ai. For computing errors, we required that before computing , 
we had to know the errors of all units in its posterior set Pj.  

For an arbitrary unit in a recurrent network, we now define its activation at time t as:  

yi(t) = fi(neti(t-1))  
 
At each time step, therefore, activation propagates forward through one layer of 
connections only. Once some level of activation is present in the network, it will 
continue to flow around the units, even in the absence of any new input whatsoever. We 
can now present the network with a time series of inputs, and require that it produce an 
output based on this series. This presents a whole set of new problems, which can be 
addressed by the networks, as well as some rather difficult matters concerning training.  



Before we address the new issues in training and operation of recurrent neural networks, 
let us first look at some sample tasks, which have been attempted (or solved) by such 
networks.  

• Speech recognition  

In some of the best speech recognition systems built so far, 
speech is first presented as a series of spectral slices to a recurrent 
network. Each output of the network represents the probability of 
a specific phonem (speech sound, e.g. /i/, /p/, etc), given both 
present and recent input. The probabilities are then interpreted by 
a Hidden Markov Model, which tries to recognize the whole 
utterance.   

• Music composition  

A recurrent network can be trained by presenting it with the notes 
of a musical score. It's task is to predict the next note. Obviously 
this is impossible to do perfectly, but the network learns that 
some notes are more likely to occur in one context than another. 
Training, for example, on a lot of music by J. S. Bach, we can 
then seed the network with a musical phrase, let it predict the 
next note, feed this back in as input, and repeat, generating new 
music. Music generated in this fashion typically sounds fairly 
convincing at a very local scale, i.e. within a short phrase. At a 
larger scale, however, the compositions wander randomly from 
key to key, and no global coherence arises. This is an interesting 
area for further work....  

15.2. The simple recurrent network 

One way to meet these requirements is illustrated below in a network known variously 
as an Elman network (after Jeff Elman, the originator), or as a Simple Recurrent 
Network. At each time step, a copy of the hidden layer units is made to a copy layer. 
Processing is done as follows:  

1. Copy inputs for time t to the input units  
2. Compute hidden unit activations using net input from input units and from copy 

layer  
3. Copy new hidden unit activations to copy layer  
4. Compute output unit activations as usual  



 

Figure 2. 

In computing the activation, we have eliminated cycles, and so our requirement that the 
activations of all posterior nodes be known is met. Likewise, in computing errors, all 
trainable weights are feed forward only, so we can apply the standard backpropagation 
algorithm as before. The weights from the copy layer to the hidden layer play a special 
role in error computation. The error signal they receive comes from the hidden units, 
and so depends on the error at the hidden units at time t. The activations in the hidden 
units, however, are just the activation of the hidden units at time t-1. Thus, in training, 
we are considering a gradient of an error function, which is determined by the 
activations at the present and the previous time steps.  

A generalization of this approach is to copy the input and hidden unit activations for a 
number of previous timesteps. The more context (copy layers) we maintain, the more 
history we are explicitly including in our gradient computation. This approach has 
become known as Back Propagation Through Time. It can be seen as an approximation 
to the ideal of computing a gradient which takes into consideration not just the most 
recent inputs, but all inputs seen so far by the network. The figure below illustrates one 
version of the process:  

The inputs and hidden unit activations at the last three time steps are stored. The solid 
arrows show how each set of activations is determined from the input and hidden unit 
activations on the previous time step. A backward pass, illustrated by the dashed 
arrows, is performed to determine separate values of delta (the error of a unit with 
respect to its net input) for each unit and each time step separately. Because each earlier 
layer is a copy of the layer one level up, we introduce the new constraint that the 
weights at each level be identical. Then the partial derivative of the negative error with 
respect to wi,j is simply the sum of the partials calculated for the copy of wi,j between 
each two layers.  



 

Figure 3. 

Elman networks and their generalization, Back Propagation Through Time, both seek to 
approximate the computation of a gradient based on all past inputs, while retaining the 
standard back prop algorithm. In the next section we will see how we can compute the 
true temporal gradient using a method known as Real Time Recurrent Learning. 

16. Real Time Recurrent Learning 

In deriving a gradient-based update rule for recurrent networks, we now make network 
connectivity very unconstrained. We simply suppose that we have a set of input units, I 
= {xk(t), 0<k<m}, and a set of other units, U = {yk(t), 0<k<n}, which can be hidden or 
output units. To index an arbitrary unit in the network we can use  

 
(1) 

Let W be the weight matrix with n rows and n+m columns, where wi,j is the weight to 
unit i (which is in U) from unit j (which is in I or U). Units compute their activations in 
the now familiar way, by first computing the weighted sum of their inputs:  

 
(2) 

where the only new element in the formula is the introduction of the temporal index t. 
Units then compute some non-linear function of their net input  

yk(t+1) = fk(netk(t))  (3) 



Usually, both hidden and output units will have non-linear activation functions. Note 
that external input at time t does not influence the output of any unit until time t+1. The 
network is thus a discrete dynamical system.  

Some of the units in U are output units, for which a target is defined. A target may not 
be defined for every single input however. For example, if we are presenting a string to 
the network to be classified as either grammatical or ungrammatical, we may provide a 
target only for the last symbol in the string. In defining an error over the outputs, 
therefore, we need to make the error time dependent too, so that it can be undefined (or 
0) for an output unit for which no target exists at present. Let T(t) be the set of indices k 
in U for which there exists a target value dk(t) at time t. We are forced to use the 
notation dk instead of t here, as t now refers to time. Let the error at the output units be  

 
(4) 

and define our error function for a single time step as  

 
(5) 

The error function we wish to minimize is the sum of this error over all past steps of the 
network  

 
(6) 

Now, because the total error is the sum of all previous errors and the error at this time 
step, so also, the gradient of the total error is the sum of the gradient for this time step 
and the gradient for previous steps  

 
(7) 

As a time series is presented to the network, we can accumulate the values of the 
gradient, or equivalently, of the weight changes. We thus keep track of the value  

 
(8) 

After the network has been presented with the whole series, we alter each weight wij by  



 
(9) 

We therefore need an algorithm that computes  

 
(10) 

at each time step t. Since we know ek(t) at all times (the difference between our targets 

and outputs), we only need to find a way to compute the second factor .  

IMPORTANT 

The key to understanding RTRL is to appreciate what this factor 
expresses. It is essentially a measure of the sensitivity of the value of the 
output of unit k at time t to a small change in the value of wij, taking into 
account the effect of such a change in the weight over the entire network 
trajectory from t0 to t. Note that wij does not have to be connected to unit 
k. Thus this algorithm is non-local, in that we need to consider the effect 
of a change at one place in the network on the values computed at an 
entirely different place. Make sure you understand this before you dive 
into the derivation given next  

16.1. Derivation of time-dependent sensitivity of outputs 

This is given here for completeness, for those who wish perhaps to implement RTRL. 

Make sure you at least know what role the factor plays in computing the 
gradient.  

From Equations 2 and 3, we get  

 

(11) 

where is the Kronecker delta  



 
(12) 

[Exercise: Derive Equation 11 from Equations 2 and 3]  

Because input signals do not depend on the weights in the network,  

 
(13) 

Equation 11 becomes:  

 

(14) 

This is a recursive equation. That is, if we know the value of the left hand side for time 
0, we can compute the value for time 1, and use that value to compute the value at time 
2, etc. Because we assume that our starting state (t = 0) is independent of the weights, 
we have  

 
(15) 

These equations hold for all .  

We therefore need to define the values  

 
(16) 

for every time step t and all appropriate i, j and k. We start with the initial condition  

pij
k(t0) = 0  (17) 

and compute at each time step  



 

(18) 

The algorithm then consists of computing, at each time step t, the quantities pij
k(t) using 

equations 17 and 18, and then using the differences between targets and actual outputs 
to compute weight changes  

 
(19) 

and the overall correction to be applied to wij is given by  

 
(20) 

 

17. Dynamics of RNNs 

Consider the recurrent network illustrated below. A single input unit is connected to 
each of the three "hidden" units. Each hidden unit in turn is connected to itself and the 
other hidden units. As in the RTRL derivation, we do not distinguish now between 
hidden and output units. Any activation which enters the network through the input 
node can flow around from one unit to another, potentially forever. Weights less than 
1.0 will exponentially reduce the activation, weights larger than 1.0 will cause it to 
increase. The non-linear activation functions of the hidden units will hopefully prevent 
it from growing without bound.  

 

Figure 1. 



As we have three hidden units, their activation at any given time t describes a point in a 
3-dimensional state space. We can visualize the temporal evolution of the network state 
by watching the state evolve over time.  

In the absence of input, or in the presence of a steady-state input, a network will usually 
approach a fixed point attractor. Other behaviors are possible, however. Networks can 
be trained to oscillate in regular fashion, and chaotic behavior has also been observed. 
The development of architectures and algorithms to generate specific forms of dynamic 
behavior is still an active research area.  

 

Figure. Xx 

17.1. Some limitations of gradient methods and RNNs. 

The simple recurrent network computed a gradient based on the present state of the 
network and its state one time step ago. Using Back Prop Through Time, we could 
compute a gradient based on some finite n time steps of network operation. RTRL 
provided a way of computing the true gradient based on the complete network history 
from time 0 to the present. Is this perfection?  

Unfortunately not. With feedforward networks, which have a large number of layers, 
the weights which are closest to the output are the easiest to train. This is no surprise, as 
their contribution to the network error is direct and easily measurable. Every time we 
back propagate an error one layer further back, however, our estimate of the 
contribution of a particular weight to the observed error becomes more indirect. You 
can think of error flowing in the top of the network in distinct streams. Each back 
propagation dilutes the error, mixing up error from distinct sources, until, far back in the 
network, it becomes virtually impossible to tell who is responsible for what. The error 
signal has become completely diluted.  



With RTRL and BPTT we face a similar problem. Error is now propagated back in 
time, but each time step is exactly equivalent to propagating through an additional layer 
of a feed forward network. The result, of course, is that it becomes very difficult to 
assess the importance of the network state at times, which lie far back in the past. 
Typically, gradient based networks cannot reliably use information which lies more 
than about 10 time steps in the past. If you now imagine an attempt to use a recurrent 
neural network in a real life situation, e.g. monitoring an industrial process, where data 
are presented as a time series at some realistic sampling rate (say 100 Hz), it becomes 
clear that these networks are of limited use. The next section shows a recent model, 
which tries to address this problem.  

18. Long Short-Term Memory 

In a recurrent network, information is stored in two distinct ways. The activations of the 
units are a function of the recent history of the model, and so form a short-term 
memory. The weights too form a memory, as they are modified based on experience, 
but the timescale of the weight change is much slower than that of the activations. We 
call those “a long-term memory”. The Long Short-Term Memory model is an attempt to 
allow the unit activations to retain important information over a much longer period of 
time than the 10 to 12 time steps, which is the limit of RTRL or BPTT models.  

The figure below shows a maximally simple LSTM network, with a single input, a 
single output, and a single memory block in place of the familiar hidden unit.  

 

Figure xx 

This figure above shows a maximally simple LSTM network, with a single input, a 
single output, and a single memory block in place of the familiar hidden unit. Each 
block has two associated gate units (details below). Each layer may, of course, have 
multiple units or blocks. In a typical configuration, the first layer of weights is provided 
from input to the blocks and gates. There are then recurrent connections from one block 



to other blocks and gates. Finally there are weights from the blocks to the outputs. The 
next figure shows the details of the memory block in more detail. 

 

Figure xx 

The hidden units of a conventional recurrent neural network have now been replaced by 
memory blocks, each of which contains one or more memory cells. At the heart of the 
cell is a simple linear unit with a single self-recurrent connection with weight set to 1.0. 
In the absence of any other input, this connection serves to preserve the cell's current 
state from one moment to the next. In addition to the self-recurrent connection, cells 
receive input from input units and other cell and gates. While the cells are responsible 
for maintaining information over long periods of time, the responsibility for deciding 
what information to store, and when to apply that information lies with an input and 
output gating unit, respectively. 

The input to the cell is passed through a non-linear squashing function (g(x), typically 
the logistic function, scaled to lie within [-2,2]), and the result is then multiplied by the 
output of the input gating unit. The activation of the gate ranges over [0,1], so if its 
activation is near zero, nothing can enter the cell. Only if the input gate is sufficiently 
active is the signal allowed in. Similarly, nothing emerges from the cell unless the 
output gate is active. As the internal cell state is maintained in a linear unit, its 
activation range is unbounded, and so the cell output is again squashed when it is 
released (h(x), typical range [-1,1]). The gates themselves are nothing more than 



conventional units with sigmoidal activation functions ranging over [0,1], and they each 
receive input from the network input units and from other cells.  

Thus we have:  

• Cell output: yc
j(t) is  

yc
j(t) = yout

j(t) h(scj(t))  

• where yout
j(t) is the activation of the output gate, and the state, scj(t) is given by  

scj(0) = 0, and  

scj(t) = scj(t-1) + yin
j(t) g(netcj(t)) for t > 0.  

This division of responsibility---the input gates decide what to store, the cell stores 
information, and the output gate decides when that information is to be applied---has the 
effect that salient events can be remembered over arbitrarily long periods of time. 
Equipped with several such memory blocks, the network can effectively attend to events 
at multiple time scales.  

Network training uses a combination of RTRL and BPTT, and we won't go into the 
details here. However, consider an error signal being passed back from the output unit. 
If it is allowed into the cell (as determined by the activation of the output gate), it is now 
trapped, and it gets passed back through the self-recurrent connection indefinitely. It can 
only affect the incoming weights, however, if it is allowed to pass by the input gate.  

On selected problems, an LSTM network can retain information over arbitrarily long 
periods of time; over 1000 time steps in some cases. This gives it a significant 
advantage over RTRL and BPTT networks on many problems. In particular LSTM have 
been used to distinguish between different spoken languages based on speech prosody 
(roughly: the melody and rhythm of speech).  
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