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Abstract  
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Abstract  

Visual tracking aims to identify a target object in each frame of an image 

sequence. It presents an important scientific problem since the human visual 

system is capable of tracking moving objects in a wide variety of situations. 

Artificial visual tracking system s also find practical application in areas such as 

visual surveillance,  robotics, biomedical image analysis, medicine and the media. 

However, automatic visual tracking algorithms suffer from two common 

problems: occlusion and camouflage. Occlusion arises w hen another object, 

usually with different features, comes between the camera and the target. 

Camouflage occurs when an object with similar features lies behind the target 

and makes the target invisible from the cameraôs point of view. Either of these 

disr uptive events can cause a tracker to lose its target and fail.   

This thesis focuses on the detection of occlusion and camouflage in a particle -

filter based tracking algorithm. Particle filters are commonly used in tracking. 

Each particle represents a sing le hypothesis as to the targetôs state, with some 

probability of being correct. The collection of particles tracking a target in each 

frame of an image sequence is called a particle set. The configuration of that 

particle set provides vital information abo ut the state of the tracker. The work 

detailed in this thesis presents three innovative approaches  to detecting occlusion 

and/or camouflage during tracking by evaluating the fluctuating behaviours of the 

particle set and detecting anomalies using a graphic al  statistical tool called a 

process -behaviour chart. The information produced by the process -behaviour 

chart is then used to map out the boundary of the interfering object, providing 

valuable information about the viewed environment.   

A method based on th e medial axis of a novel representation of particle 

distribution termed the Particle History Image was found to perform best over a 

set of real and artificial test sequences, detecting 90% of occlusion and 100% of 

camouflage events. Key advantages of the m ethod over previous work in the area 

are: (1) it is less sensitive to false data and less likely to fi re  prematurely; (2) it 

provid es a better representation of particle set behaviour by aggregating particles 

over a longer time period and (3) the use of a training set to parameterise the 

process -behaviour charts means that comparisons are being made between 

measurements that are both made over extended time periods, improving 

reliability . 
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Chapter 1  Introduction  

1.1.  General introduction and motivation  

Visual tracking is the process of generating inferences about the motion of an 

object or set of objects from a time -ordered image sequence. The relationships 

between features from neighbouring frames are analysed to recover motion. Data 

is provided only at select ed targets, but both the camera and/or target can be in 

motion.  

Tracking has received much attention and is a key problem in computer vision. 

The visual environment is naturally dynamic: people, animals and vehicles move 

almost continuously, providing cons tantly changing image data. Actual and 

potential applications are numerous and include tasks in visual surveillance, 

media analysis and generation, robotics, target tracking, biomedical image 

analysis and medicine.  

Trackers commonly consist of three main components ï an appearance model 

which describes the image feature associated with the target, a motion model 

which describes its likely movement between frames and a tracking engine which 

combines the two to recover target motion and achieve tracking. Tra cking 

engines are mostly built based upon model estimation concepts, such as Kalman 

filter or Sequential Monte Carlo methods. Kalman filtering (Kalman, 1960 ) , 

particle filtering ( Isard et al., 1996 )  and mean -shift algorithms (Comaniciu et al., 

2003 , Comaniciu, 2003 )  are among the most widely used approaches.  

Many powerful tracking techniques exist. Recent reviews on visual tracking have 

suggested that current tracking m ethods can be categorised in a number of 

different ways. Yilmaz et al (Yilmaz et al., 2006 )  use th e representation of the 

tracked object to distinguish three categories: kernel tracking, silhouette tracking 

and point tracking. Babu et al  (Babu et al., 2007 )  identify four broad types of 

tracker based on the tracking process used: gradient based methods, feature -

matching approaches, knowledge -based tracking algorithms and learni ng -based 

approaches.  

As tracking techniques and systems develop, evaluation becomes more 

important. Trackers are usually evaluated on the basis of some assessment of 

their accuracy, robustness and computational efficiency. Measures of accuracy 

reflect the  precision with which the tracker output represents the targetôs motion. 

A tracker is considered to be robust when it remains associated with its target 

throughout the input image sequence. Computational efficiency is important in 
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some applications (e.g. r eal - time surveillance or robotics), but is generally less 

important than metrics which assess the quality of tracking performed (Black et 

al., 2003 , Ellis, 2002 , Pound et al., 2007 ) .  

While many effective tracking algorithms exist common problems remain. Some 

can cause deterioration in the trackerôs accuracy while others affect robustness. 

High levels of image noise can reduce robustness by disrupting the extraction of 

target features, but at moderate levels random variations in pixel values are 

more likely to reduce accuracy. Motion noise in the form of irregular target 

mov ement complicates tracking as motion models typically assume constant or 

smoothly varying movement. Again, highly irregular motion can reduce 

robustness, but in many cases motion noise affects only tracking accuracy. 

Variation in the targetôs illumination can arise from changes in the real or artificial 

sources lighting the scene, or in the targetôs relationship to those sources. 

Illumination changes can disrupt the way the target is represented in the image 

data, making it a poor match to the appearance mo del and reducing accuracy and 

sometimes robustness, depending on the appearance model used. Reduction of 

the targetôs visibility from the cameraôs point of view is likely to cause the tracker 

to fail. There are two ways visibility of the target can be disr upted: occlusion 

and/or camouflage. Occlusion happens when objects with different appearances 

to the target fall between the target and camera. Camouflage occurs when 

objects with similar appearances to the target form the background and distract 

the track er away from the true target.  

Occlusion and camouflage are important because of the severe effect they have 

on tracker robustness. The occurrence of occlusion and camouflage during 

tracking are common and, if the camera is fixed, inevitable in most situat ions. At 

present, many tracking algorithms are able to remain associated with their 

target(s) through a reasonable number (tens or hundreds) of frames. Occlusion 

and camouflage will, however, eventually  cause tracking to fail and present 

tracking algorithm s do not allow target(s) to be reacquired with any reliability. 

Though occlusion and camouflage events typically occupy only a small number of 

frames, the length of time over which tracking can be expected to be successful 

increases substantially with ever y event that the tracker can deal with. The 

starting point of the work reported here is that detailed analysis of occlusion and 

camouflage events is necessary and important if the scope and performance of 

current visual tracking algorithms is to be improve d.  
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The work reported here focuses on the detection of these two disruptive events in 

a particle - filtered based tracking framework. Particle filters are commonly used in 

tracking. Each particle represents a single hypothesis as to the targetôs state, 

with s ome probability of being correct. The likely position of the target in each 

frame is represented by a collection of particles, referred to here as a particle set. 

Particle sets are of fixed size, but the distribution of the particles making up the 

set vari es from image to image as the tracker works to maintain an accurate 

description of its targetôs location in each image. A key feature of particle sets is 

that they are free to form multi -modal distributions, simultaneously representing 

alternative, competi ng interpretations.  

It should be stressed here that the detection of occlusion and/or camouflage is 

focused on target object(s) moving in 2D motion, where the changes to the 

targetôs position in each frame is taken into consideration and the camera 

remains  stationary throughout.  

1.2.  Research aim  

The aims of this thesis are:  

1.  To investigate the effects of interactions with interfering objects on the 

particle sets that represent estimates of target state in particle filter -based 

tracking algorithms.  

2.  To develop m ethods of detecting these events, specifically occlusion and 

camouflage of the tracked object.  

3.  To exploit the developed methods to create maps that outline areas of the 

viewed environment where occlusion and/or camouflage occur when 

tracking multiple targets moving in a static scene.    

Although, occlusion and camouflage may only take a few frames t o occur, 

trackers which can survive these events are likely to track their target(s) for 

much longer time periods. Present trackers do not explicitly detect and react to 

the occurrence of occlusion and camouflage. Instead alternative approaches are 

used to  cope with the occurrence of occlusion and camouflage. These include 

keeping the tracker more tightly focused on the target by manipulating the 

motion and/or appearance models employed and/or the engine used to apply 

them (Yang et al. , 2011 , Babu et al., 2007 , Yilmaz et al., 2006 , Xiang, 2011 )  or 

identifying areas of the environment in which the target is more likely to appear.  
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The assumption u nderlying this thesis is that the inherent complexity of real 

tracking problems means that the danger of noise and background objects 

disrupting tracking will never entirely be removed. Rather than attempt to create 

trackers which are impervious to such ha zards, the solution lies in detecting and 

reacting to the disruptive events that they cause.  

1.3.  Contributions  

Following an examination of the fluctuations in particle set distribution caused by 

these events, three approaches to the detection of occlusion and camouflage are 

considered here:  

1.  Particle clustering and process -behaviour charts  

¶ Particle clustering is used within a particle - filtered tracker to analyse 

the effects of occlusion and camouflage and identify cues related to 

them . 

¶ The information gathered f rom that analysis is exploited by using a 

process -behaviour chart to allow the tracker to determine the 

occurrences of occlusion and camouflage by monitoring the control 

points.  

2.  Particle History Images (PHI), Particle Boundary Images (PBI) and process 

beha viour charts  

¶ A novel view -based representation of apparent motion is constructed 

from the particle sets employed by a particle filter -based tracking 

algorithm, introducing the notion of the Particle History Image (PHI).  

¶ Applying a texture edge detection al gorithm to the PHI produces a 

Particle Boundary Image (PBI) which highlights the boundary of the 

particle spread in the PHI.  

¶ Information pertaining to the width of the particle spread is gathered 

by analysing the PBI.  

¶ The resulting information is exploited  using a process -behaviour chart 

to allow the tracker to detect the occurrences of occlusion and/or 

camouflage by monitoring the process -behaviour chart control points.  

3.  Comparison of the trackerôs estimate of the targetôs path and the medial 

axis of the PB I  

¶ Information pertaining to the alignment of the trackerôs estimated path 

and the medial axis path is computed.  
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¶ The computed data is exploited using a process -behaviour chart to 

detect occurrences of occlusion and/or camouflage during tracking by 

monitoring the process -behaviour chart control points.  

The effectiveness of each approach is evaluated when tracking mul tiple targets 

moving within a static scene. The resulting occlusion and camouflage events are 

then used to build Gaussian Mixture Model maps of the boundaries of the 

interfering objects, marking areas of the background environment in which 

occlusion and/or  camouflage are likely to occur.  

The rest of this thesis describes how these contributions were achieved.  

1.4.  Thesis overview  

This thesis is structured as follows:  

Chapter 2 : Motivation and Background  

An examination of the literature detailing how present trackers handle the 

occurrence of occlusion and/or camouflage is given. Kalman filtering and 

particle filtering (e.g. Condensation) mode l estimation concepts and their 

implementation are presented. A particle filter -based tracker is described and 

applied to test image sequences exhibiting occlusion and camouflage. The 

results gathered in relation to the particle set behaviour associated wi th 

these events are analysed.  

Chapter 3 : A Particle Clustering Approach    

Particle clustering via an implementation of a Gaussian Mixture Model within 

a particle - filter based tracker is presented. Use of a process -behaviour chart 

to detect occlusion and camouflage using information gathered from particle 

clustering is detailed.  The performance of the process -behaviour chart 

algorithm and the Condensation algorithm is evaluated.  

Chapter 4 : Measuring Particle Spread   

Two novel representation s: (1) Particle History Images (PHI) and (2) Particle 

Boundary Images (PBI) are presented and later analysed to measure the 

width of the particle spread. The result  of using a process -behaviour chart to 

exploit the information produced via two approaches to detect occlusion 

and/or camouflage during tracking is detailed.  

Chapter 5 : Scene Mapping   

The novel approaches presented in Chapter 3  and Chapter 4  are applied to 

scene mapping. The accuracy of each approach at detecting occlusion and/or 

camouflage when tracking multiple targets moving within a static scene is 
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measured. Scene maps built as a result of exploiting the results produced 

from each approach using process -behaviour chart is analysed. Additionally, 

the accuracy of these scene maps at describing the interfering objects 

structures of the viewed environment are also evaluated.  

Chapter 6 : Contributions  and Future Work   

Contributions of this thesis are outlined  and possible future work is 

presented.  
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Chapter 2  Motivation and Background  

2.1.  Aim  

The aims of this chapter are:  

1.  To describe the processes of occlusion and camouflage and explain their 

relevance to visual tracking.    

2.  To review how present trackers handle the occurrence of occlusion and 

camouflage.  

3.  To review key concepts in visual tracking.  

4.  To apply a particle filter -based tracker to test image sequences exhibiting 

occlusion and camouflage and to consider the particle set behavio ur 

associated with these events.   

2.2.  Motivation  

2.2.1.  Normal tracking, o cclusion , self - occlusion and 

camouflage  

Normal tracking occurs when a target is fully visible from the view of the camera 

and is successfully tracked from the start of the tracking process to the end  (e.g. 

Figure 2.5).  

Occlusion occurs when a target is lost from the view of the camera as an 

occluding object, usually with different features, falls between t he camera and the 

target. Occlusion can be static, in which a fixed object occludes the target, or 

dynamic, in which another moving object comes between the target and camera. 

Figure 2.1 shows an example of the process of occlusion. The yellow circle is the 

target being tracked while the blue rectangle is the occluding object. The yellow 

circle is fully or partially visible for the first two frames in the image sequenc e but 

in the last frame; the blue rectangle replaces it in the foreground and makes the 

yellow circle invisible from the cameraôs point of view. Self -occlusion , meanwhile, 

occurs when some part of the target occludes the feature(s) being tracked  (e.g. 

Figure 2.16 ) . The most common cause of self -occlusion is 3D rotation of the 

target, though articulated objects can self -occlude when one part of the target 

moves in front of another.  
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Figure 2 .1  The process of occlusion.  
 

Camouflage on the contrary occurs when a target becomes invisible due to the 

presence of a larger object with similar features in the background. While the 

target remains in full view, the similarity of their appearance makes the 

camouflaging and target ob jects indistinguishable. Figure 2.2 shows an example 

of the process of camouflage. The yellow circle is the target being tracked in this 

image sequence while the yello w rectangle is the camouflaging object. For the 

first two frames, the yellow circle is fully or partially distinguishable. However, in 

the last frame; the yellow circle is no longer visible, having become embedded in 

the yellow rectangular in the backgroun d.  

 
Figure 2 .2  The process of camouflage.  
 

Clutter is commonly cited as a key problem in visual tracking. Clutter occurs 

when multiple objects surrounding the target share similar features with the 

target. T his can be thought of as multiple, partial camouflaging of the target, and 

causes confusion as to the location of the true target.  

Camouflage and occlusion can cause the tracker to become dissociated from its 

target, so that the data it produces is unrelat ed to the trackerôs behaviour. 

Therefore, effective handling of these events is vital to the success of a tracking 

process.  

2.2.2.  A review of occlusion and camouflage handling  

Occlusion and camouflage are inevitable in visual tracking, and a variety of 

approach es have been adopted in response. Literature search has shown that 

occlusion can be handled in one of three ways: improving representation , 

improving search or through occlusion reasoning .  
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When improving representation , one approach is to finesse such pro blems by 

careful camera placement  (Behera et al., 2012 ) , though this is often not possible 

(Mittal et al., 2003 ) . Other approaches attempt to improve the observation model 

used by incorporating additiona l, learned  information (e.g. information of the 

target(s) visibility and existence within the scene) in to its representation (Pérez 

et al., 2005 )  or u pdating the observation model whenever occlusion occurs (Hanzi 

et al., 2007 ) . Some approaches use  a template update (Nguyen et al., 2004 )  or 

even use temporal relationships between frames (Verma et al., 2003 )  to handle 

occlusion. (Babenko et al., 2009 )  handled the occurrence of occlusion in face 

detecting by updating the appearance model using an online multiple instance 

learning approach. In (Jepson et al., 2003 , Jepson et al., 2001 ) ,(Han et al., 2005 )  

and (Ross et al., 2004 ) ,occlusion is handled via an online adaptive appearance 

model . While each of these seeks  to handle occlusion they do not completely 

solve the problem.  Learned appearance models can improve the accuracy of 

normal tracking, but require sound data from which to learn. Even if the tracker 

maintains its link to the target, both full and partial oc clusion typically reduce the 

accuracy of positional estimates. This reduces the quality of the appearance data 

passed to any learning or update algorithm, and is highly likely to lead to an 

inappropriate appearance model being learned.  

A more direct approa ch to handling occlusion involves choosing more complex 

representations of the target object(s) which are comparatively robust to 

occlusion, as done in (Jeyakar et al., 2008 ) . In (Collins et al., 2005 ) , occlusion is 

handled by representing target appearance using histograms of colour filter bank 

responses applied to red, green and blue pixel values within local image wi ndows. 

While in (Kwak et al., 2011 ) , occlusion is explicitly detected by dividing t he target 

into several cells and training a classifier using a patch likelihood. Some like 

(Nummiaro et al., 2003 , Bullock et al., 2004 )  try overcoming occlusion via the 

integration of colour distributions or th e use of colour and motion cues within the 

tracking framework. Increasing the descriptive power of the appearance model 

increases the likelihood that the tracker will survive partial occlusion but, 

whatever pattern of features is used, there remains a chan ce that key information 

will be hidden. More descriptive appearance models also make it easier to re -

acquire the target after full occlusion, but this is only possible if the tracker 

models target motion well enough to be able to predict where it will reap pear.  

Meanwhile, the use of mixed dynamical motion models (Brasnett et al., 2007 )  has 

also shown to be robust when dealing with occlusion.  This , however, increases 

the complexity of the model s as stronger assumptions about the tracked object 
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are imposed to achieve better performance, generally restrict ing  the applicability 

of the tracker concerned (Senior et al., 2006 ) . The approach is also still unlikely 

to solve the occlusion problem completely as partial and full occlusion reduces the 

accuracy of positional estimates, resulting in lower  quality motion models be ing  

produced. However, it can lead to a system which degrades gracefully in the 

event of occlusion . 

Another way of handling occlusion is by modifying the underlying search engine 

(Ma et al., 2009 ) . (Lanz, 2006 , Arnaud et al., 2007 )  handles occlusio n by 

modifying the diffusion step within the probabilistic propagation process of a 

Sequential Monte Carlo method using partial linear Gaussian models.  (Song et al., 

2010 )  handles occlusion via a set of rules of tracklet estimation which is 

embedded into a stochastic graph evolution framework. In (Karavasilis et al., 

2011 ), occlusion is handled by forwarding a prediction of the objectôs location to a 

Kalman filter whose parameters are estimated online based on a recent histo ry of 

the motion models. Others try to handle occlusion by using multiple trackersô 

output (Leichter et al., 2006 , Kwon et al., 2011 )  or multiple tracking hypotheses 

(Maggio et al., 2009 , Babu et al., 2007 , Babu et al., 2006 )  to help improve the 

propagation process between time steps. Though this may be effective 

nevertheless, it will result in a constraint on computational time and resources.  

Occlusion reasoning  meanwhile, can be implemented by using spatio - temporal 

reasoning to determine the consistency of dynamic scene interpretation (Bennett 

et al., 2008 ) , via Bayesian networking (Town, 2007 )  or by deriving a likelihood 

model according to image formation principles and implementing occlusion 

reasoning at pixel level (Lanz, 2006 , Arnaud et al., 2007 ) . In ( Lascio et al., 

2013 ) , the authors uses contextual reasoning to deal with complex occlusion 

involving a plurality of moving people simultaneously,  where the rationale is 

grounded on a suitable representation and exploitation of the recent history of 

each moving person being tracked. While (Adam et al. , 2006 )  and (Chockalingam 

et al., 2009 )  handles occlusion by using robust statistics to reason about 

occlusion via decomposing the target into multiple components or patches. 

Conventionally, occlusion reasoning is done over depth or trajectories. In 

occlusion reasoning over depth, several projects have sought to address the 

problems caused by occlusion by explicitly representing occlusion relationship 

between objects. The goal here is to identify when a tracked target is likely to be 

(partially) occluded and vary the trackerôs operation accordingly. Occlusion 

reasoning typically involves some estimation of the depths of targets and 

potentially occluding objects. (Greenhill et al., 2008 )  recover a probability density 
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function for scene depth at each pixel from a tr aining set of observations of 

people moving through an indoor environment. This is then used in a correlation -

based tracker to prevent occluded pixels being included in the computation of the 

correlation measure. The approach successfully reduces the effec t of occlusion by 

static, background objects. To deal with the dynamic occlusion caused by other 

moving objects, (Greenhill et al., 2008 )  adopt the approach of (Senior et al., 

2006 ) . This exploits appearance models of the objects being tracked to allow 

each pixel to be as signed to the most likely object, and so relative depth to be 

recovered, when two targets overlap. When occlusion reasoning over trajectories, 

(Rosales  et al., 1998 )  detected dynamic occlusion by projecting the trajectories 

estimated by an Extended Kalman filter forward in time and thresholding the 

expected degree of overlap between pairs of targets. Occlusion is confirmed by 

applying a similar test t o actual target descriptions. Targets are then merged for 

the duration of the occlusion, which can also be predicted using the available 

information, and split again once itôs over.  

Explicit discussion of handling camouflage has received less attention in  the vision 

literature  as compared to occlusion. In (KaewTrakulPong et al., 2003 ) , t hey 

describe a system which employs colour, motion and sha pe models to track low 

resolution targets. The shape model used is a simple bounding box, which they 

note increases in size during camouflage and shrinks during occlusion. When 

these effects occur, the tracker moves from a data association to stochastic 

sampling process. It should be stressed, however, that (KaewTrakulPong et al., 

2003 )  do not explicitly seek to detect these events and the switc h to stochastic 

sampling is made whenever a new observation cannot be associated with an 

existing track, whatever the reason. Whereas, in (Stolkin et al., 2012 , Talha et 

al., 2012 , Zhou et al., 2012 , Shen et al., 2012 ) , camouflage is handled by 

consistently improving the target state estim ation at each successive frame 

through comparison between the foreground and background models. (Stolkin et 

al., 2012 , Talha et al., 2012 )  presented a method that combines image data from 

a colour camera and a deep infra - red thermal imaging camera which continuously 

relearns local background models in each imaging modality, comparing these 

against a model of the foreground object being tracked and thereby adaptively 

weighting the data fusion process in favour of which ever imaging modality is the 

most dis criminating at each successive frame. In the event of camouflage, the 

method reduces the influence of this poor modality and rel ies  more on 

information from more discriminating modality. (Zhou et al., 2012 ) , presents a 

novel foreground object detection scheme which constructs a foreground model 

based on the object model and the state of each target using the EM framework. 
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Camouflage is handled by augmenting the foreground detection using the 

foreground model, whereby, the fusion of the detection result for estimating the 

objectôs state avoids the estimation drifting to the background area.  (Shen et al., 

2012 )  proposed a better temporal constraint  to encourage segmentation which 

maintains a consistent appearance of foreground in consecutive frames, as this 

assists shape prior to alleviate camouflage. It should be stressed again here that, 

even though, these methods do attempt to handle camouflage w hen and if it does 

occur, these methods were not created to explicitly seek and detect the 

occurrence of camouflage during tracking.  

Examination of the literature has shown no significant  analysis of the changes 

taking place within a tracker during occlus ion and camouflage, i.e. over the few 

frames it takes for the target to transition from normal visibility to full occlusion 

or camouflage. Closer examination of the measurement stage of a particle filter -

based tracker provides useful information on the cha nges taking place within the 

particle set during occlusion and camouflage events. Measurement steps are 

often quite complex, powerful operations but can provide a lot of information 

about the targetôs local environment. In addition, particle filters are particularly 

good at providing this information, as they sample from both the target and its 

surroundings.  

Section 2.3  presents a review of two common model estimatio n concepts used to 

build a tracking engine. The section will conclude by justifying the selection of a 

particle filter -based tracker as the platform for the research reported in this 

thesis.  

2.3.  A review of model estimation concepts  

Two model estimation concepts commonly used to build a tracking engine, the 

Kalman filter and particle filter, are examined in this section.   

2.3.1.  Kalman filter  

The Kalman filter was introduced in 1960 by (Kalman, 1960 ) , but its roots can be 

traced as far back to the Gaussôs method of least squares in 1795 (Simon, 2001 ) . 

Since its discovery, the Kalman filter has been applied in a range of diverse 

applications. In spite of it being developed for spa ce navigation, the Kalman filter 

has been used in areas such as nuclear power plant instrumentation, 

demographic modelling, manufacturing, the detection of underground 

radioactivity, fuzzy logic, neural networks (Simon, 2001 ) , automated missile 

guidance systems, robotics (Nagenborn, 2003 ) , radar tracking, sonar ranging, 
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satellite orbit determination (Cipra, 1999 )  and improving precision (Greenspan et 

al., 2004 ) . The Kalman filter is also used to build  tracking engines within visual 

trackers (Forsyth et al., 2003 , Welch et al., 1995 ) . 

Literature has shown the Kalman filter being applica ble to a diverse of problems, 

though, it is limited to linear motion and uni -modal Gaussian densities. The 

Kalman filter cannot represent multiple alternative hypotheses. Implementing a 

Kalman filter is also made more difficult due to the existence of the Riccati 

equation ( Isard et al., 1998a ) . Moreover, Kalman filter based contour tr ackers 

which run in real time are very susceptible to distraction by clutter and 

correlation -based systems and is vulnerable to changes in object appearance and 

lighting and rapidly slows down as the space of deformations increases in 

complexity ( Isard et al., 1998b ) . As a result, an alternative solution to overcome 

the limitations of Kalman filter is provided by  a group of algorithms based upon 

the notion of the particle filter.  

2.3.2.  Particle filters  

Particle filters, also known as sequential Monte Carlo methods (Kitagawa, 1996 , 

Doucet et al., 2000 , Cappe et al., 2007 ) , are powerful estimation techniques 

based on simulation commonly used to handle non -Gaussian densities. Particle 

filters are based on point mass or ñparticleò representations of probability 

densities which is applicable to any state -space method and generalize the 

tradi tional Kalman filtering method (Arulampalam et al., 2002 ) . The Particle filter 

is defined as a class of simulation filters that recursively approximate the random 

variable ),,(| 1t
¡= tt yyYa 2 by ñparticlesò 

M

t

1

t aa ,,2 , with discrete probability 

mass of 
M

tt pp ,,1 2  (Pitt et al., 1999 ) . The principle advantage of particle filters is 

that they do not rely on any local linearization technique or any crude function 

approximation and they have found real time application in fi elds as diverse as 

chemical engineering, computer vision, financial econometrics, robotics (Doucet 

et al., 2008 ) , statistics, and signal processing (Cappe et al., 2007 ) . Particle filters 

can be subdivided into two categories: particle filters that re -use particles and 

require re -sampling to prevent divergence, e.g. sequential import ance particle 

filters and Bootstrap particle filters, or particle filters that do not re -use particles 

and therefore require no re -sampling, e.g. Gauss -Hermite particle filters, Monte 

Carlo particle filters and Unscented particle filters (Haug, 2005 ) . Particle filters 

are simple to implement, robust towards fluctuating motions and able to handle 

non - linearity. As a result, a variety of algorithms utilizing the concept of particle 

filte r together with some other variation of concepts has been introduced. Among 
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them are Gaussian particle filters (Kotecha et al., 2003 ) , the Rao -Blackwellised 

particle filter (Sim et al., 2007 ) , the Kalman particle filter (Li et al., 2003 ) , 

Auxiliary particle filter (Pitt et al., 1999 )  and the mean shift embedded particle 

filter (Shan et al., 2007 ) . 

In real tracking, multi -modal distributions are often required to represent 

competing hypotheses. Particle filtering is used to model this situation as particle 

filters can represent a higher degree of ambiguity in the targetôs state. Particle 

filtering was introduced into computer vision in the Condensation algorithm ( Isard 

et al., 1996 , Isard et al.,  1998a ) .  

2.3.2.1.  The Condensation algorithm  

Condensation was developed to handle non -Gaussian state densities in visual 

tracking. Condensation is part of the particle filter family, though there is a 

significant difference that separates the two. ( Li et al., 2003 )  presents evidence 

that for the Condensation sampling step, the proposa l distribution from which 

particles are drawn is the distribution conditional on the particle state at the 

previous frame: the latest observation is only used in the weighting step and not 

in the sampling step.  

Each particle in Condensation represents a s ingle hypothesis as to the targetôs 

state, with some probability of being correct. Particles are compared to an 

observation in order to predict where the target is likely to be in the following 

frame of an image sequence. In visual tracking, particles are normally shown as 

spots of different colour or intensity overlaying a series of images as shown in  

Figure 2.3.  

 

Figure 2 .3  Particles tracking a football player.  
 

Condensation is based on factored sampling. Factored sampling is used to 

approximate probability distribution, whereby in principle can be evaluated using 

the Bayesô rule (Bayes et al., 1763 ) . Though, in practice, it can be evaluated 

using iterative sampling techniques ( Isard et al., 1998a ) . Condensation is 

estimated by a set of discrete particles. A sample or particle set 
n

tx which consists 
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of the targetôs state vector representation is chosen from a prior distribution, 

denoted as (){ }Nnxt ,,1, 2= , where n  refers to the n th  particle set, t  refers to the 

current time step and N is the sample size of the population. Ta rget state is 

commonly position but need not be as shape, colour or velocity can be used as 

alternative. Particles drift between time steps, so a motion model is used. In 

addition, to capture the uncertainty in the motion model, some noise is added to 

the particles. This noise is added to the targetôs state vector representation. The 

particles then diffuse and agitate individually. Particles are distributed across the 

search space as each particle experiences Brownian motion step independently. 

This results  in a new un -weighted particle set for the new time step. 

Subsequently, factored sampling takes place whereby the weights tp  for each 

particle are obtained based on how similar the particle is when matched against 

an observation density . Consequently, this result in a weighted particle set, 

denoted as ( ){ }Nnx n

t

n

t ,,1,, 2=p . A high similarity will result in a high ratio, 

whereas, a low similarity will result in a low ratio value being assigned. To start 

the next iteration, a posterior distribution set is estimated by copying particles 

from the prior distribution set but taki ng into account their respective weights. 

Therefore, particles with high weight can be selected more than once. The sample 

size for the posterior distribution is identical to the prior distribution for time t+1 . 

Finally the new posterior distribution set r eplaces the old prior distribution set and 

the entire process is repeated again for the next time step.  

The advantages presented by Condensation have resulted in several extensions 

to Condensation being addressed in the literature. ICondensation ( Isard et al., 

1998b )  provides a combination of low and high level information in a constraint 

probabilistic framework  with the incorporation of importance sampling into 

Condensation. Mixed -state Condensation ( Isard et al., 1998c )  meanwhile, 

develops random sampling method s to allow automatic switching between 

multiple motion models as a natural extension of the tracking process.  

Section 2.4  provides groundwork for the research repo rted in this thesis. The 

section will begin by detailing the implementation of the Condensation algorithm. 

Subsequently, test image sequences that exhibit occlusion and camouflage are 

presented. The section will conclude by analysing  the results gathered f rom 

applying the Condensation algorithm to test image sequences exhibiting occlusion 

or camouflage.  
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2.4.  Groundwork: Condensation, occlusion and 

camouflage  

2.4.1.  Condensation algorithm implementation  

A flowchart of the  Condensation process is shown in Figure 2.4, further details are 

given in Algorithm 2.1. Implementation of Condensation tracking is 

straightforward. The particle set is represented as an array of N simple data 

structures, each representing one particle. Each particle data structure contains a 

hypothesised target state and an associated weight . State values are initialised 

randomly,  and initial weights computed by matching the hypothesised states 

(typically target position) to the first image in the sequence. To predict target 

state (location) in the next image, N particles are randomly selected from the 

array. The selection process takes weights into account, so higher weighted 

particles are more likely to be selected. A given particle may be selected more 

than once. The selected particles are projected forward in time using a model of 

the expected motion of the target, often constan t velocity. Random noise is then 

added to the predicted state descriptions. This prevents multiple copies of the 

same particle from making identical hypotheses and increases the search area. 

The new particle are weighted, as before, by comparing hypothesis ed states to 

image data; the next image in the sequence. The set of weighted particles 

created at each time step (i.e. for each image) represents the trackerôs 

estimation of itôs targets properties. For display purposes, the highest weighted 

particle or a weighted mean of the particle set can be used to indicate target 

location. Examples of the operation  of the Condensation algorithm are shown in 

section 2.4.3 . 



Chapter 2  

17  

 
Fi gure 2 .4  A flowchart of a Condensation process . 

 

Algorithm 2 .1  Condensation algorithm (Isard et al., 1996; Isard et al., 1998a).  
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A point representation (Yilmaz et al., 2006 )  Condensation algorithm is 

implemented in this thesis.  A sample state is defined as:  

( )P= ,,,, vuyxX  

where x  and y  are the target coordinate location, u  and v  are the target 

velocities and Pis the sample weight.  

The success of the Condensation algorithm is governed by the effectivenes s of 

the measurement model, motion model and initial state values. The following 

section details the measurement and motion model(s) and justification of initial 

state values.  

2.4.1.1.  Measurement model  

The measurement model estimates the probability of a target b eing present at 

the location being examined. The probability of a given state is estimated by 

matching the measurement model to the current model of the image at a 

particular location. An observational measurement model (measurement model 

henceforth) repre sents the original state of the target. Feature selection on which 

the measurement model and current model is built on plays a pivotal role in the 

success of determining the presence of the target in the image during tracking. 

Different feature representat ion such as colour, edges, optical flow or texture 

(Yilmaz et al., 2006 )  can be used to characteri ze the target. Nevertheless, colour 

representations based on RGB colour space or HSV colour space have shown 

(Nummiaro et al., 2003 )  to be a common approach for building these model(s). 

HSV colour space is more illumination invariant than RGB colour space. By 

discarding the V value, hue and sat uration becomes less sensitive to illumination 

changes. As mentioned in Chapter 1 , illumination changes in tracking can gravely 

affect the tracking process. Therefore, the proper choice of colour space is vital to 

the success of tracking. As a result, the HSV colour space is used in this thesis. 

The measurement model and current model are built as a two dimensional 

histogram. The histogram is a distribution representation of the targetôs hue and 

saturation. Hue and saturation can be computed using (2.1) and (2.2) 

respectively. The colours red, green and blue are represented as R, G and B, 

while hue and saturation are represented as H and S respectively in (2.1) and 

(2.2).  



Chapter 2  

19  

( )

( )

( )

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ

ç

å

=

=öö
÷

õ
ææ
ç

å

-

-
+

=öö
÷

õ
ææ
ç

å

-

-
+

=öö
÷

õ
ææ
ç

å

-

-
+

=

0 MAXif 

MAXB if 
BGMINRMINBGMAXRMAX

GR

 MAXG  if 
BGMINRMINBGMAXRMAX

RB

MAXR if 
BGMINRMINBGMAXRMAX

BG

H

,0

,
))),(,()),(,((

60*
240

,
))),(,()),(,((

60*
120

,
))),(,()),(,((

60*
0

 (2.1)                         

)),(,(

))),(,()),(,((

BGMAXRMAX

BGMINRMINBGMAXRMAX
S

-
=                 (2.2)  

The similarity between the measurement histogram and current histogram is 

measured using Bhattacharyya distance (Bhattacharyya, 1943 , Kailath, 1967 , 

Djouadi et al., 1990 , Ahere et al., 1997 , Comaniciu et al., 2003 ) . Bhattacharyya 

distance measures the similarity of two normalized discrete or continuous 

probability distributions. In this thesis, 
)(up represents the measurement 

histogram while the current histogram is represented by
)(uq . The result obtained 

from measuring the similarity of 
)(up and

)(uq  is a value between 0 and 1. An exact 

similarity between 
)(up and 

)(uq will produce a result of 1 whereas non similarity 

will produce a result of 0. The Bhattacharyya distance is computed using (2.3):  

ä
=

=
M

u

uu qp  distance yyaBhattachar
1

)()(
                       (2.3)  

where { }
Mu

upp
,,1

)(

2==  and { }
Mu

uqq
,,1

)(

2== . M refers to the total number of 

histogram bins used.  

2.4.1.2.  Motion model  

Motion models are applied to the targetôs original position (x, y) to allow the 

target to experience motion across time. A constant velocity model is commonly 

used. At e ach time step, the targetôs new position ),( tt yx is estimated by adding 

the velocity ),( tt vu  onto the old targetôs position),( 11 -- tt yx . The velocity at every 

time step is computed using (2.4):  

),),), 11 ---= tttttt yTarget(xyTarget(x vVelocity(u                  (2.4)  

Process n oise is also added to the targetôs position to capture the uncertainty in 

the motion model. In this thesis, noise is generated randomly using a probability 

density function. The Box -Muller transform (Box et al., 1958 )  is used to generate 
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a pair of random numbers from the same normal distribution given a pair of 

random numbers. Since only one noise value can be added to the targetôs 

position at a g iven time, therefore, only one random number is used. The random 

number is generated using (2.5):  

ms+
ö
ö

÷

õ

æ
æ

ç

å -
=

c

c
b  Noise

ln2
*                                  (2.5)  

where b is a given random number, c is the total multiplication of 2 given random 

numbers, mean, mis zero and standard deviation, sis 5. A standard deviation of 

5 is selected because 95% of noise will fall between 5° . Hence, an add itional 

noise of 5 pixels is added to the targetôs new position after adding the original 

target position with the velocity model. Any higher standard deviation will cause 

the target to experience a drastic increase in motion which can result in the 

failur e of tracking.  

2.4.1.3.  Initial state values  

In Condensation, increasing the number of particles typically results in increased 

tracking performance. However, it also leads to an increased in processing time. 

As a compromise , a particle set size of 100 per target w as used. A particle set 

size of 100 was found to produce a good tracking result for artificial videos as well 

for challenging real -world videos.  

For each video sequence, the initial starting point is user defined. Initial particles 

are automatically spread within the targetôs vicinity using a normal distribution 

random number generator. A normal distribution is used because 95% of the 

particles gen erated will be within one sigma radius of the initial position. This 

ensures that the particles generated remains within the vicinity of the target 

boundary and avoids particles being initialized to track something other than the 

actual target. The normal distribution random number generator details have 

already been presented in the Motion model  section. A standard deviation of 5 is 

used. Therefore, 95% of particles w ill be placed approximately 5° pixels from the 

user defined position.  

Process noise parameters were chosen to distribute particles over an area of 

radius ranging from 1 to 10 and it is user defined. The selection of a radius size 

depend s on the target size. A smaller radius value is chosen to track a small size 

target. This is because it will force the particles to stay concentrated onto the 

target. If a higher radius value is chosen, it may cause some particles to not track 

the target b ut instead track the background surrounding the target.  
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Histogram bins are user defined as well. The number of histogram bins ranges 

from 10 to 50. A histogram bin of size 10 was found to produce a good tracking 

result when used on artificial and real vid eos.  

The initial velocities of particles are set to zero.  

2.4.2.  Test videos  

Test video selected or created for this thesis, all exhibit occlusion and/or 

camouflage. Test videos are divided into two groups: artificial and real test 

videos.  

2.4.2.1.  Artificial videos  

Artif icial videos are created by combining together a series of images where, in 

each image, a target is placed at different position on a path to exhibit a constant 

motion.  Images were created to show a target (yellow circle) either experiencing: 

(1) normal tracking or (2) occlusion or (3) camouflage. In all the images created, 

the image background is always initialised to white.  

For normal tracking, a yellow circle is next drawn at the left boundary of the 

image. Then, in successive images, a constant veloci ty model is added to the 

circleôs position. The velocity model is specified by the user . Adding the velocity 

model causes the circle to be drawn at a different position in the image, which 

simulates  the circle moving horizontally. This process is repeated until the circle 

reaches the right boundary of the image. Finally, all the images are concatenated  

together to produce the artificial video.  

For occlusion and camouflage, the process is repeated. Additionally, in these 

images, a differently coloured rectan gle (to invoke occlusion) or an identically 

coloured rectangle (to invoke camouflage) is drawn at the middle of every image 

and on the path of the moving yellow circle. As before , the images are then 

appended together to produce the respective artificial v ideos once the circle 

reaches the right boundary of the image.  

A total of six artificial videos were created. Each exhibits one of three different 

scenarios: a target moving normally, a target experiencing occlusion while 

moving and a target experiencing camouflage while moving. In order to 

demonstrate the reliability and effectiveness of the tracker used, the six videos 

are separated into 2 groups. One group of videos has no clutter  present while the 

second group of videos has 4 types of clutter  present. Clutter  is added to make 

the videos more realistic as real videos are never entirely free from clutter .  
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Artificial videos that have no clutter  present show a yellow circle placed at the left 

boundary of the image sequence moving horizontally to the right boundary of the 

image. In two videos, a differently (to invoke occlusion) or an identically (to 

invoke camouflage) coloured rectangle is placed in the path of the moving yellow 

circle. Figure 2.5 illustrates a target moving normally while Figure 2.6 and Figure 

2.7 illustrate a target experiencing occlusion and camouflage respectively.  

 

Figure 2 .5  A yellow circle moving normally.  

 

 

Figure 2 .6  A yellow circle experiencing occlusion.  

 

 

Figure 2 .7  A yellow circle experiencing camouflage.  
 

In the artificial videos with clutter , background clutter and three different types of 

noise are added:  motion noise, image noise and target noise. Background clutter  

adds objects with different sizes, shapes and colours randomly to the background 

of the image while the target is moving in the foreground of the image. Motion 

noise adds random velocity - (u, v)  to the targetôs position- (x, y) in order to have 

an uneven interval in the targetôs movement. Image noise adds random colour 

pixels onto the entire image sequence of a video. Target noise only adds random 

colour pixels to the targetôs vicinity in the image sequence. Motion, image and 

target noise are generated using a probability density function with a mean, m of 

zero and standard deviation, s of 10. A standard deviation of 10 is selected so 
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that 95% values obtained will fall between 10° . Since a percentage value is used 

to control the amount of noise generated for each artificial video, therefore, if a 

higher standard deviation value is selected, it will contribute to excessive noise 

being generated which will affect the tracking process. Trial and error using 

percentage values ranging from 0.1% to 100% was performed to determine the 

optimum percentage for each noise. Optimum percentage values were chosen on 

the basis of optimum values of no ise generated does not affect the tracking 

process at an early stage even before the target experiences occlusion or 

camouflage. However, if no percentage limit is found, half of the maximum 

percentage is selected as the optimum value. The maximum percenta ge is not 

used because an overly noisy video will be produced since each video generated 

comprises of a combination of all four noise types. Therefore, the optimum values 

for each noise are: background clutter  (50%), image noise (50%), movement 

noise (1.0% ) and target noise (0.14%). In tracking, the measurement model 

which determines the success of tracking a target is build during the initial frame 

of a video sequence. To avoid any form of noise also being recorded into the 

measurement model which can affe ct the tracking process acutely, no form of 

noise is generated in the initial frame of the artificial videos. Figure 2.8 illustrates 

a yellow circle moving normally b ut with clutter  present while Figure 2.9 and 

Figure 2.10  demonstrates a yell ow circle experiencing occlusion and camouflage 

in addition to the presence of  clutter .  

 

Figure 2 .8  A yellow circle moving normally but in the presence of clutter .  
 

 

Figure 2 .9  A yellow circle experiencing occlusion and in the presence of clutter . 
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Figure 2 .10  A yellow circle experiencing camouflage and in the presence of 

clutter .  

 

2.4.2.2.  Real videos  

A tot al of six real videos was chosen or captured. Similar to the artificial video, 

each of the real videos exhibits a target either moving normally, or experiencing 

occlusion or camouflage while moving.  

In Figure 2.11 , a tree occludes a woman while in Figure 2.12 , a player 

camouflages a football. Figure 2.13 , Figure 2.14  and Figure 2.15  demonstrate a 

tennis ball either moving normally or experiencing occlusion or camouflage. 

Figure 2.16  illustrates a table tennis bat experiencing self -occl usion.   

 

Figure 2 .11  A tree occludes a woman.  

 

 

Figure 2 .12  A player camouflages a football.  
 

 

Figure 2 .13  A tennis ball moving normally.  
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Figure 2 .14  Some books occlude the tennis ball.  
 

 

Figure 2 .15  A bag and file camouflages the tennis ball.  

 

 

Figure 2 .16  A table tennis bat experiences self -occlusion.  

 

2.4.3.  Condensation:  the effect of occlusion and 

camouflage  

Applying a particle filter or Condensation algorithm to the test videos allows a 

closer examination of the measurement stage to be made. Analysis is centred on 

the particle distributions that arise as tracked targets  become occluded or 

camouflaged.  It should be pointed out here again that the detection of occlusion 

and/or camouflage is focused on target object(s) moving in 2D.  




































































































































































































































































































